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Abstract
The anomalous properties of cold and supercooled water, such as the fact
that at sufficiently low temperatures it becomes more compressible and less
dense when cooled, and more fluid when compressed, have attracted the
attention of physical scientists for a long time. The discovery in the 1970s that
several thermodynamic and transport properties of supercooled water exhibit a
pronounced temperature dependence and appear to diverge slightly below the
homogeneous nucleation temperature inspired a large number of experimental
and theoretical studies. Likewise, an important body of work on glassy water
has been stimulated by experiments, starting in the mid-1980s and continuing to
this date, which suggest that vitreous water can exist in at least two apparently
distinct forms. A coherent theory of the thermodynamic and transport properties
of supercooled and glassy water does not yet exist. Nevertheless, significant
progress towards this goal has been made during the past 20 years. This article
summarizes the known experimental facts and reviews critically theoretical
and computational work aimed at interpreting the observations and providing
a unified viewpoint on cold, non-crystalline, metastable states of water.
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1. Introduction

Water affects virtually every aspect of our lives, from climate to travel and from agriculture to
public health. Its properties have a profound influence on the physical and chemical processes
that are essential for life [1]. It is difficult to think of an industrial process that does not
involve water as a solvent, product, reactant, or as an impurity. As one of the Aristotelian
elements, water has long been central to scientific thought [2, 3]. Countless masterpieces
in music, painting, architecture, and literature attest to water’s central place in our collective
imagination [2].

To the modern physical scientist water is a source of fascination on account of its unusual
properties. It is the only chemical compound that occurs naturally in the solid, liquid and
vapour phases, and the only naturally occurring inorganic liquid on earth [1]. Cold liquid water
expands and becomes more compressible when cooled, and less viscous when compressed.
Its dielectric constant in the normal liquid range is unusually large, and its melting and
boiling temperatures are uncommonly high for a non-metallic hydride. In the crystalline
state, water has thirteen known polymorphs, of which nine (ices II, III, V, VI, VII, VIII, X, XI
and ordinary hexagonal ice, Ih) are stable over a certain range of temperature and pressure,
and four are metastable (ices IV, IX, XII and cubic ice, Ic) [4, 5]. Liquid water’s anomalies
become more pronounced when it is cooled below the freezing point without crystallizing
(supercooled). In fact water’s oddities at ambient conditions, such as the fact that it becomes
less compressible when heated, are remnants of more pronounced low-temperature anomalies.
It is therefore necessary to investigate water in the supercooled range in order to fully understand
its properties at ambient conditions. Many thermophysical properties of supercooled water
exhibit a pronounced temperature dependence. When these properties are extrapolated slightly
beyond the limit where ordinary measurements are no longer possible because of homogeneous
nucleation of the stable crystalline phase, they appear to diverge. Understanding the origin of
this behaviour is a major scientific challenge.

The two decades since the publication of Angell’s classic review articles on supercooled
water [6, 7] have witnessed intense research activity on the amorphous solid (glassy) forms
of water. When cooled fast enough to avoid crystallization, water, like other liquids, vitrifies.
Unlike most other substances, though, glassy water can apparently exist in at least two distinct
forms, of which one pair may be separated by a first-order phase transition. One of the most
important ideas of the past two decades in this field is the realization that supercooled and
glassy water are intimately related, and that fundamental understanding of metastable water
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must encompass both its liquid and vitreous states. The purpose of this article is to summarize
the experimental facts and to review theoretical progress towards a comprehensive picture of
the thermodynamic and transport properties of supercooled and glassy water.

Space constraints and thematic unity necessarily impose limits on the scope of any review.
The present one being no exception, important topics such as supercooling and vitrification in
aqueous solutions (e.g., [8]) and supercooling and vitrification of water in restricted geometries
(e.g., [9–11]) are not discussed.

2. The water molecule and hydrogen bonds

The water molecule consists of two hydrogen atoms and an oxygen atom. The HOH angle is
104.5◦, and the intramolecular OH distance is 0.957 Å [12]. The partial charges on the oxygen
and hydrogen atoms and their mutual geometrical arrangement give rise to a dipole moment
of 1.84 D in the vapour phase. If the OH bonds were fully ionic, the dipole moment would
be 5.61 D. Each OH bond is therefore approximately 1/3 ionic and 2/3 covalent in character
[13].

A strong, directional attraction can occur between an oxygen atom and a hydrogen atom
belonging to a different water molecule. When this happens, a hydrogen bond is said to
exist [14]. Ordinary hexagonal ice (Ih), the stable form of water below 273 K at atmospheric
pressure, constitutes the best-known example of the water molecule’s ability to engage in
multiple hydrogen bonds. Each water molecule in ice has four nearest neighbours, and acts
as a hydrogen donor to two of them, and as hydrogen acceptor to the other two. There results
a space-filling network in which these four nearest neighbours are located at the vertices of a
regular tetrahedron surrounding the central oxygen atom, and each O–O distance is 2.74 Å.
The HOH angle in the water molecule is very close to the tetrahedral angle, 109.5◦. The
tetrahedrally coordinated network of ice is held together by hydrogen bonds. On account of the
strong directionality of the bonds, the network is open. When ice melts at atmospheric pressure,
loss of long-range order is accompanied by a 9% density increase. The strength of a hydrogen
bond is approximately 20 kJ mol−1, that is to say, some 8 kT at ambient temperature. This is
considerably stronger than a regular dispersive interaction, about 1 kJ mol−1, but significantly
weaker than a covalent bond, about 400 kJ mol−1. The heat of fusion of ice Ih at atmospheric
pressure is 6.01 kJ mol−1, and the heat of sublimation at the triple point is 51.09 kJ mol−1 [12].
This implies that the majority of hydrogen bonds are unbroken upon melting. Thus, in liquid
water close to the melting point, and more so in supercooled water, local tetrahedral symmetry
persists, although this order is transient and short-ranged.

The origin of water’s unusual properties is the tendency of molecules to attract each other
strongly through hydrogen bonds [13]. This added energetic stability is achieved by forming
transient tetrahedral arrangements in which bond strength and directionality impose a low local
density and cause a loss of orientational entropy. At sufficiently low temperatures, therefore,
hydrogen bonds force energy and volume, as well as entropy and volume, to be negatively
correlated. In most other liquids these correlations are positive.

3. Water in the stable liquid range

In order to discuss the behaviour of supercooled water, it is useful first to review some of the
properties of water in the stable liquid range. The isobaric heat capacity of liquid water at atmo-
spheric pressure is approximately 76 J mol−1 K−1. It exhibits a weak minimum with respect to
temperature at 35 ◦C, changes by less than 1% across the stable liquid range, and is reduced to
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Figure 1. The TMD for D2O as a function of pressure: experimental (◦); and extrapolated
from [310] (— · —). TM is the melting temperature, and TH is the homogeneous nucleation locus
(see also section 4). Reprinted, with permission, from [63] Angell C A and Kanno H 1976 Science
193 1121. Copyright (1976) AAAS.

approximately half its liquid-phase value upon boiling or freezing [1]. The isochoric heat ca-
pacity decreases monotonically across the melting-to-boiling range: it equals 75.9 J mol−1 K−1

for the liquid at the triple point, and 67.9 J mol−1 K−1 at the boiling point [15].
The specific volume of water decreases by 1.621 cm3 mol−1, or 8.3%, to

18.0182 cm3 mol−1, upon melting at 1 bar [12]. It decreases further with increasing
temperature, reaching a minimum of 18.0158 cm3 mol−1 at 4 ◦C, and increases monotonically
thereafter, to 18.798 cm3 mol−1 at the boiling point [12]. Although the magnitude of this
effect is small, it has important thermodynamic consequences. The locus of temperatures at
which the density is maximum at fixed pressure defines water’s locus of density maxima, also
referred to as the temperature of maximum density (TMD). At positive pressure this locus
has a negative slope in the (P, T ) plane; see figure 1. The following thermodynamic identity
relates the slope of the TMD to the temperature dependence of the isothermal compressibility
KT [16]: (

∂KT

∂T

)
P,at TMD

= v−1(∂2v/∂T 2)P,at TMD

(d p/dT )TMD
(1)

where KT = −(∂ ln v/∂ P)T , v is the molar volume, the subscript ‘at TMD’ signifies that the
partial derivative is evaluated at a point on the TMD locus, and the subscript TMD signifies that
the derivative is evaluated along the TMD locus, at the state point of interest. The numerator of
the right-hand side is positive at the TMD [16]. Equation (1) therefore shows that a negatively
sloped TMD necessarily implies that the compressibility must increase upon cooling. A
pronounced increase in compressibility upon cooling is a distinguishing feature of supercooled
water.

When a liquid is superheated, that is to say heated above the boiling point without
boiling, its compressibility increases. Furthermore, the isothermal compressibility of any
fluid is infinite at the critical point. It follows that, at any sub-critical pressure, the isothermal
compressibility of a liquid is an increasing function of temperature near the vapour–liquid
coexistence region. Water’s well-known isothermal compressibility minimum (figure 2) is
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Figure 2. The temperature dependence of water’s isothermal compressibility KT at atmospheric
pressure. Note the minimum at 46 ◦C. A multiparameter fit of the data for stable and moderately
supercooled water from [311] (◦). Also shown are the scanned and digitized supercooled water
measurements of Speedy and Angell [60] (•).

therefore a direct consequence of the existence of a TMD, and signals the particular pressure-
dependent temperature where (∂KT /∂T )P changes sign. The low-temperature region where
(∂KT /∂T )P is negative reflects the influence of the TMD; the high-temperature region where
this quantity is positive reflects the influence of the superheated liquid spinodal.

Water’s thermal expansion coefficient α (=(∂ ln v/∂T )P ) is negative below 4 ◦C at
atmospheric pressure. Since the TMD locus is the boundary between states where α > 0
and those where this quantity is negative, it follows from figure 1 that water’s thermodynamic
anomalies are suppressed upon compression and heating. This can also be seen from the
thermodynamic identity(

∂KT

∂T

)
P

= −
(

∂α

∂ P

)
T

. (2)

Together with equation (1) and figure 1 the above equation implies that the magnitude of α

decreases upon compression in the large part of the anomalous region (α < 0) where the
left-hand side of equation (2) is negative.

A salient characteristic of water’s behaviour at atmospheric pressure is the fact that its
response functions (response of density or entropy to changes in temperature or pressure)
increase in magnitude upon cooling [3]. This increase starts at 46 ◦C for the compressibility,
35 ◦C for the isobaric heat capacity cp (= T −1(∂s/∂T )P ) and 4 ◦C for the coefficient of thermal
expansion, and becomes more pronounced as the temperature lowers. Each of the response
functions is associated with a corresponding fluctuation [17]

〈(δV )2〉 = V kT KT (3a)

〈(δS)2〉 = Nkcp (3b)

〈(δS δV )〉 = V kTα. (3c)

The compressibility is a measure of volume fluctuations (V being the mean value of the
fluctuating volume for a fixed number of molecules). The isobaric heat capacity is proportional
to the entropy fluctuations experienced by N molecules at fixed pressure. The thermal
expansion coefficient reflects the correlations between entropy and volume fluctuations (V
being the mean value of the fluctuating volume for a fixed number of molecules). In most
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Figure 3. A schematic comparison of the isobaric temperature dependence of the density ρ, thermal
expansion coefficient α, isothermal compressibility KT and isobaric heat capacity cp for water and
a simple liquid.

(This figure is in colour only in the electronic version)

liquids, volume and entropy fluctuations become smaller as the temperature decreases. In
water, on the other hand, volume and entropy fluctuations become more pronounced as the
temperature lowers. In most liquids, entropy and volume fluctuations are positively correlated:
an increase in volume results in a corresponding increase in entropy. In water below 4 ◦C, on the
other hand, volume and entropy fluctuations are anti-correlated: a decrease in volume brings
about an increase in entropy. Figure 3 illustrates the striking contrast between water and
‘normal’ liquids. This dichotomy becomes increasingly pronounced in the supercooled range.

The anti-correlation between entropy and volume is a consequence of the formation of an
open hydrogen bonded network, in which a decrease in orientational entropy is accompanied
by a volume increase. Although this network is transient and short-ranged in the liquid,
as opposed to being permanent and long-ranged in ice, it is the microscopic basis for water’s
negative thermal expansion, and consequently it influences the thermodynamics of liquid water
profoundly.

At temperatures between 273 and 306 K, the shear viscosity of liquid water decreases
with pressure up to about 1 kbar (figure 4) [1, 18]. Likewise, the self-diffusion coefficient
increases with pressure for temperatures lower than 300 K [19]. The pressure dependence of
these transport coefficients is anomalous: in most liquids, compression causes loss of fluidity.
In cold water, on the other hand, compression disrupts the hydrogen bond network, giving
rise to increased fluidity [20, 21]. Translating this qualitative physical picture into a predictive
theory for water’s transport properties remains, as with thermodynamic quantities, a major
challenge.

4. Ranges of stability and metastability

Figure 5 shows the temperature domains of stability and metastability for liquid and
glassy water at atmospheric pressure [3, 22]. The stable liquid range is limited by the
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Figure 4. The pressure dependence of the shear viscosity of water. The dashed lines are phase
boundaries (ice Ih, left; ice V, right). The locus of minima is also shown. Reprinted, with
permission, from [24], Debenedetti P G, Metastable Liquids, Concepts and Principles copyright
(1996) Princeton University Press, and adapted  originally from [18].

equilibrium melting (0 ◦C) and boiling points (100 ◦C). Water can be superheated up to
about 280 ◦C [23, 24], although an even higher temperature, 302 ◦C, has been reported in a
pulse heating experiment [25]. Small droplets, with diameters in the 1–10 µm range, can be
supercooled down to about −42 ◦C [24, 26, 27]. This range (−42 to 280 ◦C) is more than three
times wider than the stable liquid range. Glassy water formed by rapid cooling of the liquid
has a glass transition temperature of about 136 K [28, 29]. Recently, it has been argued that
this temperature should be re-assigned to 165 K [8, 30] (glassy water is discussed in section 6).
When vitreous water is heated, it crystallizes spontaneously to ice Ic (cubic ice) at around
150 K [28, 31].

In water, as in any other liquid, the onset of crystallization can be shifted to lower
temperatures by reducing the concentration of nucleation-inducing impurities. This is
usually done by purifying the sample and subdividing it into small droplets [32–36]. If
the concentration of crystallization-inducing impurities is reduced to, say, 1012 l−1, a 5 µm
droplet will, on average, contain less than one impurity [6]. Such droplets can be easily
supercooled down to a temperature where the intrinsic rate of crystallization becomes so
large that the lifetime of the droplet becomes vanishingly small: the lifetime of a 5 µm
droplet under conditions where the nucleation rate reaches 1015 cm−3 s−1, for example, is
10−5 s. This condition defines a pressure-dependent experimentally attainable ‘limit’ of
supercooling, commonly referred to as the homogeneous nucleation temperature. Because
of the extraordinary sensitivity of the nucleation rate to the extent of supercooling [24], the
attainable limit of supercooling is a weak (logarithmic) function of droplet diameter.

The above-defined conditions (1–10 µm droplets exposed to sub-freezing temperatures
and free of ice-nucleating impurities) occur naturally in cirrus clouds, where liquid water below
−40 ◦C has been observed [24, 37, 38]. More recent observations have demonstrated the
existence of large quantities of liquid water down to −37.5 ◦C in deep convective clouds [39].
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Figure 5. Temperature domains of stability and
metastability for liquid and glassy water at atmospheric
pressure. Equilibrium transitions are shown as full lines,
kinetically controlled transitions as dotted lines. Adapted
from [3] and [22].

Figure 6. Homogeneous nucleation temperature of water
droplets emulsified in a liquid hydrocarbon continuum
phase as a function of pressure (TH). TM is the melting
temperature. Reprinted, with permission, from [24],
Debenedetti P G, Metastable Liquids, Concepts and
Principles copyright (1996) Princeton University Press,
and adapted  originally from [33].

These studies highlight the importance of supercooled water in cloud processes such as rainfall
and electrification [40–42].

Water’s homogeneous nucleation limit is shown in figure 6. These experiments were
performed using water-in-oil emulsions stabilized by sorbitan tristearate (surfactant), with
either n-heptane or mixtures of methylcyclopentane and methylcyclohexane as the continuous
phase, and water droplet sizes in the 1–10 µm range [33]. At atmospheric pressure water can
be supercooled to about −42 ◦C [26, 27]. The homogeneous nucleation temperature reaches
a minimum of −92 ◦C at 2 kbar. The parallelism between the homogeneous nucleation and
melting loci is indicative of a corresponding change in the nature of the solid phase formed by
the nucleation process.

Because of the spectacular increase in the nucleation rate and the consequent decrease
of droplet lifetime, the roughly 80 K wide interval between the homogeneous nucleation
temperature and the spontaneous crystallization to ice Ic is sometimes regarded as a region
where liquid water cannot be observed (‘no man’s land’ [22]). It should be remembered,
however, that the homogeneous nucleation temperature is a kinetic constraint, not a
thermodynamic one. Hence it is not an absolute but a practical limit, and is a function of
the cooling rate and the observation time. The very fact that glassy water can be formed by
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rapid cooling means that it is possible to cool water faster than it crystallizes, and homogeneous
nucleation can be bypassed. The challenge is then to make measurements in the very short times
available during rapid cooling, when water is still liquid. An important step in this direction
has been taken by Bartell [43, 44]. He used evaporative cooling of molecular clusters produced
by condensation of water vapour in supersonic flow through small nozzles. Typical cluster
sizes and cooling rates were 74 Å (6600 molecules), and 107 K s−1, respectively. Electron
diffraction patterns of the water clusters showed no evidence of crystallization until roughly
200 K, whereupon freezing to ice Ic occurred (the cluster temperatures and hence the cooling
rates were calculated, not measured, in these experiments). Also noteworthy are small-angle
neutron scattering (SANS) measurements on supercooled D2O droplets (5–8 nm) produced
by expansion of a N2–D2O mixture in a Laval nozzle [45]. Calculated temperatures as low as
210 K were reported for liquid droplets in these experiments [45]. The SANS measurements
allow the characterization of droplet size, and the technique has been applied both to pure
D2O [45, 46] and H2O–D2O mixtures [47, 48].

These supersonic flow experiments demonstrate that it is possible to make measurements
on liquid water below −42 ◦C. This requires sample sizes smaller than the customary
micrometre range, very fast cooling and considerable experimental ingenuity in carrying
out thermophysical property measurements over very short time windows. But these are
not insurmountable obstacles. Experimental studies of liquid water below the homogeneous
nucleation ‘limit’ are not only possible but urgently needed for a definitive picture of the
thermodynamics of supercooled water. An important degree of freedom not exploited to date
is the fact that the rate of nucleation in water, as in all supercooled liquids, is a non-monotonic
function of temperature. This is a consequence of the competition between increase in the
thermodynamic driving force and viscous slow-down upon supercooling, giving rise to sharp
extrema in the temperature dependence of nucleation rates [24]. This means that although
rapid cooling is needed to bypass crystallization, there exists a range of temperatures below the
homogeneous nucleation ‘limit’ within which droplet lifetimes increase with further cooling.
Diffusion measurements in the range 150 K < T < 160 K [49], and measurements of flow
properties at 140 K [50] suggest rich experimental possibilities in the temperature range where
water, after being rapidly cooled, is hot enough to be no longer a glass, but cold enough to not
yet crystallize at a measurable rate [51].

5. Properties of supercooled water

5.1. Density and its derivatives

Table 1 lists experimental measurements of supercooled water’s density, its temperature
and pressure derivatives (i.e., thermal expansion coefficient and isothermal compressibility,
respectively), and its TMD.

At atmospheric pressure the density of supercooled water decreases with decreasing
temperature (figure 7). The isothermal compressibility and the magnitude of the thermal
expansion coefficient increase markedly with decreasing temperature (figures 2 and 8).
Application of pressure (figures 9 and 10) displaces the anomalies to lower temperatures.
As shown by equations (1) and (2), thermodynamic consistency dictates that the increase in
isothermal compressibility upon isobaric cooling and the decrease in the magnitude of the
negative thermal expansion coefficient upon isothermal compression are inseparable from the
existence of a negatively sloped TMD, such as water possesses at the conditions where it has
been measured.
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Figure 7. The temperature dependence of liquid water’s density at atmospheric pressure. Data
from [54] (−34 to 4 ◦C) and [312] (5–60 ◦C).

Table 1. Measurements of supercooled water’s density and its derivatives.

Property Rangea Reference

Density, thermal expansion coefficient 1 bar; −23/4 ◦C [52]
1 bar; −40/24 ◦C [53]
1 bar; −34(H), −29(D)/4 ◦C [54]
1 bar; −35(H), −30(D)/5 ◦C [55]
1/1500 bar; −26/20 ◦C(D) [56]b,c

1 bar; −34(H), −19(D)/40 ◦C [57]b

1 bar; −33/−5 ◦C [58]b

1/2000 bar; −20/25 ◦C [59]b,d

Isothermal compressibility 1 bar; −26/45 ◦C [60]
1/1900 bar; −30/25 ◦C (H&D) [61]
1 bar; −34/25 ◦C [62]

Temperature of maximum density 1/1200 bar; −24/15 ◦C(D) [63]
−230/1 bar; 6/14 ◦C (H&D) [64]

a H = H2O; D = D2O. Measurements are for H2O unless otherwise indicated.
b Thermal expansion coefficient tables or graphs also provided.
c Temperature of maximum density tables or graphs also provided.
d Isothermal compressibility tables or graphs also provided.

5.2. Heat capacity

Table 2 lists experimental measurements of supercooled water’s isobaric heat capacity.
At atmospheric pressure the isobaric heat capacity of supercooled water increases

markedly with decreasing temperature (figure 11). The more recent bulk measurements due to
Tombari et al [70] show an even more pronounced decrease. To date, equivalent measurements
at high pressure have not been done. The isochoric heat capacity, cv, has been measured at
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Figure 8. The temperature dependence of the thermal expansion coefficient of supercooled H2 O and
D2O at atmospheric pressure. Reprinted, with permission, from [24], Debenedetti P G, Metastable
Liquids , Concepts and P r inciples copyright (1996) Princeton University Press, and adapted
originally from [57].

Table 2. Measurements of supercooled water’s isobaric heat capacity.

Rangea Reference

1 bar; −7.5/31 ◦C [65]
1 bar; −35(H), −30(D)/5 ◦C [55]
1 bar; −38(H), −34(D)/5 ◦C [66]
1 bar; −38(H), −33(D)/4 ◦C [67]
1 bar; −35/17 ◦C [68]b

1 bar; −37(H), −33(D)/17 ◦C [69]
1 bar; −28.5/10 ◦C [70]
1 bar; −37/12 ◦C [71]

a H = H2O; D = D2O. Measurements are for H2O unless otherwise indicated.
b Study on H2O + H2O2 and H2O + N2H4. Contains also H2O data.

moderate supercooling [65]. Calculations based on the thermodynamic identity

cv = cp − vT
α2

KT
(4)

and the measured density, compressibility and thermal expansion predict that cv does not
increase anomalously upon supercooling.
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Figure 9. The temperature dependence of supercooled water’s isothermal compressibility at several
pressures. Lines are fits of experimental data to power-law divergences as per equation (11), with
exponent γ = 0.373. Reprinted, with permission, from [24], Debenedetti P G, Metas table L iquids ,
Concepts and Principles copyright (1996) Princeton University Press, and adapted originally
from [61].

5.3. Sound velocity

The hydrodynamic sound velocity is given by

c = (ρm Ks)
−1/2 = (ρm KT cv/cp)

−1/2 (5)

where ρm is the mass density and Ks the adiabatic compressibility: Ks = (∂ ln ρ/dP)s .
Trinh and Apfel [72] used the diffraction of a laser beam by an ultrasonic standing wave
(about 3 MHz) to measure the sound velocity in supercooled water at atmospheric pressure
down to −16.75 ◦C. The data show a decrease from 1410 m s−1 at 0 ◦C to 1310 m s−1 at
−16.75 ◦C. The opposite trend would apply for a normal liquid, that is to say one whose
adiabatic compressibility decreases upon cooling. The same authors [73] calculated the
speed of sound from thermodynamic data, using equation (5), and predicted a minimum
with respect to temperature around −25 ◦C. Using an acoustic levitation technique, Trinh
and Apfel [74] measured the sound velocity down to −33 ◦C at 54 kHz. The data show
a levelling-off of the sound velocity below −25 ◦C, with a possible minimum around
−30 ◦C (c ≈ 1230 m s−1), although experimental uncertainties prevent the unambiguous
characterization of the low-temperature trends as levelling-off versus showing an extremum.
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Figure 10. The temperature dependence of the thermal expansion coefficient of supercooled D2O
at several pressures. The high-temperature portions of the isobars are from [313]. Reprinted, with
permission, from [24], Debenedetti P G, Metastable Liquids, Concepts and Principles copyright
(1996) Princeton University Press, and adapted  originally from [56].

Speed of sound measurements in supercooled water under pressure (�3.5 kbar) were performed
by Petitet et al [75].

Rouch et al [76] used Brillouin scattering to study sound propagation in supercooled water
down to −9 ◦C in the GHz range. This method involves measuring the frequency of sound
waves generated by the scattering of a single-frequency laser beam,

c = ωBλ

4πn sin(θ/2)
(6)

where the measured quantity is ωB, the Brillouin frequency ( f = ωB/2π is the sound wave
frequency), λ is the laser beam wavelength, n is water’s index of refraction and θ is the
scattering angle. Results from this technique, subsequently extended to −20 ◦C by Teixeira
and Leblond [77] and by Conde et al [78], show monotonically decreasing sound velocity
upon supercooling, as do the measurements of Bacri and Rajaonarison [79] down to −26 ◦C.

To date, the discrepancy at T � −23 ◦C between the measurements of Apfel and co-
workers [72–74], which span the kHz–MHz range and suggest the existence of a sound velocity
minimum (adiabatic compressibility maximum), and the GHz-range Brillouin scattering
measurements [76–79] that show a monotonic decrease in the sound velocity have not
been resolved. One possible interpretation of this discrepancy is an anomalous dispersion
relationship in deeply supercooled water, whereby the sound velocity would decrease with
increasing frequency. Subsequent studies aimed at probing sound dispersion in supercooled
water, however, have ruled out this possibility [80–82]. Using Brillouin scattering (1–10 GHz),
Magazú et al [80] and Cunsolo and Nardone [81] observed positive dispersion and a well-
defined minimum in the sound velocity with respect to temperature that shifts towards higher
temperatures with increasing frequency.
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Figure 11. The temperature dependence of supercooled water’s isobaric heat capacity cp at
atmospheric pressure. Literature data (•) included in the original [69], as well as measurements
of Angell et al (◦). Reprinted, with permission, from [24], Debenedetti P G, Metas table L iquids ,
Concepts and Principles copyright (1996) Princeton University Press, and adapted originally
from [69].

As predicted by Rahman and Stillinger via molecular dynamics [83], water’s dynamic
structure factor exhibits two modes. The high-frequency mode shows linear dispersion for
wavevectors q above about 4 nm−1, with velocity 3200 m s−1, as observed in stable D2O
by means of inelastic neutron scattering [84] and in stable [85–88] and supercooled [82, 89]
H2O by means of inelastic x-ray scattering. It was thought originally that this high-frequency
mode corresponded to a second, ‘fast sound’, perhaps associated with hydrogen dynamics.
However, the similarity of the spectra in H2O and D2O indicates that this mode is a centre-of-
mass property. The velocity changes progressively from 3200 to 1500 m s−1 upon decreasing q
below 4 nm−1 [86], indicating that water’s ‘fast sound’ [83] is simply the normal longitudinal
acoustic branch, which is subject to a positive dispersion. This interpretation is consistent
with simulations [90, 91], and has been rendered quantitative through measurements of the
density dependence of the sound velocity [88] and the temperature dependence of the relaxation
time [89]. The low-frequency mode is weakly dispersive, and when extrapolated to q = 0 it
implies a sound velocity of about 1500 m s−1. However, simulations [92] and comparisons
between water and ice [86] have shown that this mode has a large transverse component at large
wavevectors, whereas sound waves are longitudinal. Ruocco and Sette [93] have reviewed this
topic recently.

5.4. Miscellaneous static properties

Table 3 lists measurements of the dielectric constant, vapour pressure and surface tension of
supercooled water.
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Table 3. Measurements of supercooled water’s dielectric constant, vapour pressure and surface
tension.

Property Rangea Reference

Dielectric constant 1 bar; −36/20 ◦C [94]
1 bar; −35/0 ◦C [95]
1 bar; −17/20 ◦C [96]
1 bar; −16.5/32 ◦C [97]

Vapour pressure −15/−3 ◦C [98]
−14(H), −12(D)/−2(H), 2(D) ◦C [99]
−2.5/5 ◦C [100]
−22(H), −15.5(D)/0(H), 3(D) ◦C [101]

Vapour–liquid interfacial tension 1 bar; −8/−5 ◦C [102]
1 bar; −22.2/27 ◦C [103]
1 bar; −27.2/60 ◦C [104]
1 bar; −21/24 ◦C [105]

aH = H2O; D = D2O. Measurements are for H2O unless otherwise noted.

Table 4. Measurements of supercooled water’s self-diffusion coefficient.

Rangea Reference

Supercooled
1 bar; −25/30 ◦C [106]
1 bar; −31/25 ◦C [107]
1/2380 bar; −20/2 ◦C [108]
1/3000 bar; −20/0 ◦C [109]
1/4000(H), 2000(D) bar;

−70(H), −30(D)/0(H), 180 ◦C(D) [19]
1/3500 bar; −21.5/0 ◦C [110]
1 bar; −35.4/25 ◦C [111]
1 bar; −29/25 ◦C(D) [112]
2000/4000 bar; −39/22 ◦C(D) [113]

Glassy → supercooledb

1 bar; −123/−113 ◦C [49, 114]

a H = H2O; D = D2O. Measurements are for H2O unless otherwise indicated.
b Experiments involve heating an initially glassy film above its apparent glass transition.

5.5. Diffusion coefficient

Experimental measurements of supercooled water’s self-diffusion coefficient are listed in
table 4. They fall into two categories: results from studies performed on supercooled water
and on glassy water. In the latter case, the experiments (described below) involved heating
an amorphous sample and the measured diffusivities may pertain to deeply supercooled and
highly viscous water.

In addition to the studies listed in table 4, mention must be made of the pioneering
incoherent quasi-elastic neutron scattering investigations of diffusive motions in supercooled
water by Chen et al [115] and Teixeira et al [116]. These authors studied water at atmospheric
pressure and over the temperature range −20 ◦C � T � 20 ◦C. They identified two relaxation
times: a short time τ1 associated with rotational relaxation (τ1 ≈ 2 ps at −20 ◦C) and an
intermediate time τ2 associated with translational motion of the water molecule (τ2 ≈ 23 ps at
−20 ◦C). τ1 was found to exhibit Arrhenius behaviour, whereas the temperature dependence of
τ2 was found to be non-Arrhenius. By fitting the scattering linewidth to a jump diffusion model
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Figure 12. The pressure dependence of liquid water’s self-diffusion coefficient at several
temperatures. Reprinted, with permission, from [19].

these authors were also able to calculate a jump distance that increased upon supercooling (e.g.,
L = 1.29 Å at 20 ◦C and 2.39 Å at −20 ◦C). It was not possible to determine accurate values for
the self-diffusion coefficient at low temperatures because under these conditions the linewidth
was lower than the half-width at half-maximum of the instrument’s resolution function [116].

Figure 12 shows the pressure and temperature dependence of supercooled water’s self-
diffusion coefficient [19]. At atmospheric pressure the diffusivity decreases almost 15-fold
between 25 and −35 ◦C [107]. Notably, the diffusivity increases with pressure at low enough
temperatures (T � about 10 ◦C [19, 108, 109]). The isobaric temperature dependence at 1 bar
shows deviations from Arrhenius behaviour, with an effective activation energy that increases
at lower temperatures to about 45 kJ mol−1 at −31 ◦C [7].

In a remarkable study, Kay and co-workers measured the extent of isotope exchange and
mixing in vapour-deposited thin films of amorphous water using temperature-programmed
desorption [49, 114, 117, 118]. Amorphous solid water (ASW) films were formed by molecular
beam deposition onto Au(111) and Ru(001) single-crystal substrates. Isotopically labelled
H2

16O and H2
18O nanoscale films (<5000 Å thick) were deposited sequentially on top of

each other, and temperature-programmed desorption was used to measure quantitatively the
desorption kinetics and thereby reveal the extent of mixing between the films of different
isotopic composition [49]. The substrates were heated by means of a resistance, from 85 K
to a temperature above which the films had completely desorbed [117]. Quantification of the
temperature-dependent diffusivity was done by fitting a one-dimensional transport model to the
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Figure 13. The temperature dependence of the diffusion coefficient in ASW films heated above
the glass transition (�). Diffusion coefficients were calculated by fitting isotopic intermixing data
from temperature-programmed desorption experiments [49, 114]. Also shown are diffusivity data
for liquid water (◦) [19, 107, 111] and ice ( ) [314, 315]. The full line is a fit of the ASW data to
the Vogel–Tammann–Fulcher form (see equation (8)), with singular temperature T0 = 119 ± 3 K.
The dashed line is a fit of the supercooled liquid data to a power-law form such as equation (7),
with singular temperature 219.2 K and exponent 1.74. Reprinted from [114], Smith R S et al 2000
Chem. Phys. 258 291. Copyright (2000), with permission from Elsevier.

Table 5. Measurements of supercooled water’s shear viscosity.

Rangea Reference

1 bar; −9.3/0 ◦C [119]
1 bar; −24/0 ◦C [120]
1 bar; −8/40 ◦C [121]
1 bar; −35(H), −31(D)/0(H), 4 ◦C(D) [122]
1/6000 bar; −15/10 ◦C [18]b

a H = H2O; D = D2O. Measurements are for H2O unless otherwise indicated.
b Data for stable water; includes extrapolated values for supercooled water at −15 ◦C.

experimentally measured desorption rates [118]. The heating protocol apparently caused the
glassy films to go through the glass transition in the 135–140 K range1 and then to crystallize to
cubic ice (Ic) in the 150–160 K range. The calculated diffusivities are shown in figure 13. Both
the magnitude and the temperature dependence of the diffusion coefficient are consistent with
the idea that highly supercooled water is formed above the glass transition and below the onset
of crystallization. Comparison with ice diffusion data suggests that the film did not crystallize
in the 150–157 K range. For bulk samples the onset of crystallization occurs at 150 K [28, 31],
so presumably the delayed crystallization is due to interactions with the substrate.

5.6. Shear viscosity

Table 5 lists measurements of supercooled water’s shear viscosity.
The shear viscosity of liquid water at atmospheric pressure increases sharply upon

supercooling, and displays non-Arrhenius behaviour (figure 14). As shown in figure 4, the

1 The assignment of water’s glass transition temperature is controversial, however. See section 6.1.
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Figure 14. An Arrhenius plot of the shear viscosity of supercooled water at atmospheric
pressure [122]. Diffusivity data [107] are also shown. Reprinted, with permission, from [24],
Debenedetti P G, Metastable Liquids, Concepts and Principles copyright (1996) Princeton
University Press.

viscosity of water decreases upon compression for T � 306 K [1, 18]. However, no actual
measurements exist of the pressure dependence in the supercooled region. The data reported
in [18] are for stable water, although some extrapolated values at supercooled conditions are
included in the paper.

5.7. Miscellaneous dynamic properties

In an important body of work, Lüdemann and collaborators investigated relaxation processes
in supercooled water over a wide range of temperatures and pressures by measuring nuclear
magnetic relaxation times [113, 123–127]. The orientational correlation time τθ was calculated
from measurements of spin–lattice relaxation in 1H, 2H and 17O nuclei. Agreement between
the results obtained by the emulsion-based technique used by Lang and Lüdemann and the
analogous but bulk measurements of DeFries and Jonas [18] indicates that the behaviour of
water in about 6 µm droplets [123] is indistinguishable from that observed in the bulk. Below
about 1 kbar, Lang and Lüdemann found that the isobaric temperature dependence of τθ could
be described by a power law of the form

τθ = τ0

(
T − Ts

Ts

)−γ

. (7)

At P � about 1.5 kbar,on the other hand, the data were well represented by a Vogel–Tammann–
Fulcher (VTF) form

τθ = τ̃0 exp

(
B

T − T0

)
. (8)
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(a) (b)

Figure 15. The temperature dependence of the orientational correlation time τθ for D2O at 50 bar
(left) and 2 kbar (right). Data are plotted according to equations (7) (Speedy–Angell) and (8) (VTF),
with singular temperatures Ts, T0 = 229, 134 K (50 bar) and 175, 139 K (2 kbar). Reprinted, with
permission, from [125].

Figure 15 shows that equations (7) and (8) provide accurate representations of the experimental
data over some three decades of orientational correlation time at low and high pressures,
respectively. Figure 16 shows the singular temperatures obtained from these fits. This suggests
a gradual transition, upon application of pressure, from dynamics dominated by proximity
to an apparent singularity (equation (7); see section 7.5), to regular viscous liquid behaviour
(equation (8)). Earlier studies by Hindman and collaborators investigated proton and deuterium
spin–lattice relaxation in supercooled water at atmospheric pressure [128, 129].

The dielectric relaxation time of supercooled water has been measured down to −18 ◦C by
Bertolini et al [97], and at modest supercoolings (T � 270 K), for both H2O and D2O, by Rønne
et al [130–132]. Bertolini et al found that supercooled water could be described by a single
dielectric relaxation time, showing Arrhenius temperature dependence. Rønne et al [130–132]
fitted the frequency dependence of the complex dielectric constant to a double Debye model,
and obtained fast (fs) and slow (ps) relaxation times. The temperature dependence of the slow
(Debye) process was well represented by a Debye–Stokes–Einstein-type relation (according
to which the quantity T τ/η, where τ is the dielectric relaxation time and η the shear viscosity,
should be constant), as well as by an expression such as equation (7), with Ts = 228 K (235 K
for D2O).

6. Properties of glassy water

Water, like any other liquid, can be vitrified when cooled sufficiently fast as to avoid
crystallization. Unlike other substances, however, water can apparently form at least two
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Figure 16. The pressure and isotope dependence of the singular temperatures Ts (equation (7)
and figure 15) and T0 (equation (8) and figure 15) for water’s orientational correlation time τθ .
Also shown are the melting TM and homogeneous nucleation (TH) temperatures. Reprinted, with
permission, from [125].

distinct forms of glass. Of these, two have been extensively studied: they are known as low-
density and high-density amorphous ice (LDA and HDA, respectively). The properties of
LDA and HDA, and the nature of the transition between them, are key to understanding
the thermodynamics of supercooled and stable liquid water. Recently, very-high-density
amorphous ice (VHDA) has been proposed as a third distinct form of glassy water [3].

6.1. Low-density amorphous ice (LDA)

The first laboratory report on the formation of ASW by rapid cooling dates back to 1935, when
Burton and Oliver [133] found that an amorphous solid was formed when water vapour at low
pressure was deposited on a sufficiently cold substrate. A large body of experimental work has
since confirmed this observation (e.g., [134, 135]). Typically, thin films of vapour-deposited
ASW are grown on single-crystal substrates (e.g., Au(111), Ru(001), Pt(111)) at deposition
rates between 0.1 and 7 µm h−1 and temperatures between 10 and 120 K, using molecular
beams [118, 136]. The morphology and physical properties of ASW films depend sensitively
on the growth angle, thermal history of the film and substrate characteristics [137–141].

The direct vitrification of liquid water was first achieved by Brüggeller and Mayer [142]
by ejecting a pressurized emulsion of µm-size water droplets in n-heptane onto liquid ethane



Topical Review R1689

Table 6. Irreversible transformations between water’s non-crystalline forms.

Stepa Conditions Reference

1 Vapour deposition on cold substrate (e.g., 77 K) e.g., [135]
2 Anneal in vacuo at 113 K e.g., [29]
3 Hyperquench µm-sized droplets on cryoplate e.g., [146]
4 Anneal at 130 K [28]
5 Quench emulsified water below 130 K at 104 K s−1 at about 5 kbar [154]
6 Compress ice Ih at 77 K to about 10 kbar e.g., [149]
7 Decompress HDA at 77 K, then heat to about 120 K at 1 bar e.g., [149, 150]
8 Compress LDA at 77 K to about 5 kbar e.g., [150]
9 Isobaric heating of HDA to 165 K at 11 kbar [155]

10 Isobaric heating of HDA to 177 K at 19 kbar [155]
11 Isochoric heating of VHDA from 77 to about 140 K starting at 200 bar [155]
12 Isobaric heating of VHDA from 77 to about 127 K at 1.1 kbar [155]

a See figure 18.

at 90 K. These authors subsequently vitrified pure (non-emulsified) water by projecting a
high-speed thin jet into liquid propane at 80 K [143]. Variants of this method have important
applications in electron microscopy [144, 145]. Using rapid cooling of small aerosolized water
droplets (3 µm � d � 25 µm) onto a metal cryoplate (15 K � T � 77 K), Mayer was able
to vitrify liquid water without resorting to a liquid cryomedium [146]. Vitrification of water
by rapid cooling of the liquid is referred to as hyperquenching, since it requires cooling rates
of about 106 K s−1; the resulting material is called hyperquenched glassy water (HGW).

After annealing in vacuum from 77 to about 113 K [29], ASW relaxes to a material that
is indistinguishable from HGW. This identity has been confirmed by calorimetry [20], x-ray
and neutron scattering [147], and Raman spectroscopy [148]. Another route to glassy water
is to compress hexagonal ice at 77 K to about 11 kbar, decompressing the resulting material
and heating it to about 120 K [149, 150]. The high-density phase obtained by compressing
ordinary ice is called HDA, and is discussed in detail in sections 6.2 and 6.3. The material
produced by decompressing HDA and heating is called LDA. X-ray and neutron diffraction
measurements suggest that LDA is structurally identical to HGW and annealed ASW [147]
(figure 17). Because of small differences between the apparent glass transition temperatures of
LDA and HGW, as well as subtle structural differences revealed by incoherent inelastic neutron
scattering [151, 152], it has been suggested that HGW and LDA are different materials [153].
It seems more likely, however, that such residual differences reflect variations in the method
of preparation and experimental procedures, such as annealing [22]. The consensus view at
present is that LDA, HGW and annealed ASW are the same material [3, 22]. The irreversible
transformations between water’s various non-crystalline forms are illustrated in figure 18 and
table 6. Table 7 lists measurements of important thermophysical properties of LDA.

As mentioned in section 4, when LDA is heated to about 150 K, it crystallizes to ice Ic
(cubic ice) [31]. Thus, in the range of temperatures from 136 to 150 K, non-crystalline water
would appear to be a highly viscous liquid slightly above its glass transition. Using a blunted
conical indenter, Johari [50] showed that LDA does indeed deform under load and behaves like
a viscous liquid near 143 K. Jenniskens et al [51] also reported liquid-like behaviour in thin
ASW films in the range 140–210 K. The isotope exchange experiments of Kay and co-workers
(see [49, 114, 117, 118]; figure 13) are also consistent with the notion of ultraviscous liquid
water in the vicinity of 150 K. On the other hand, Fisher and Devlin [161] investigated isotope
exchange reactions in ASW and concluded that the data were inconsistent with the occurrence
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(a)

(b)

Figure 17. (a) The weighted molecular pair correlation function, dL = 4πrρ[g(r) − 1] of HGW
at 77 K (solid curve) and LDA (dotted curve), determined by means of x-ray diffraction. Here r is
the intermolecular separation and g(r) is the centre-of-mass radial distribution function. (b) The
weighted intermolecular pair correlation function of HGW at 77 K (solid curve) and LDA (dotted
curve), determined by means of neutron diffraction. The intermolecular function is obtained by
Fourier transforming the difference between the static structure factor and the molecular form factor,
yielding only the contribution from intermolecular terms. Note the structural similarity between
HGW and LDA. Reprinted, with permission, from [147].
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Figure 18. Irreversible transformations between water’s various non-crystalline forms. See table 6
for details on the paths.

of translational diffusion. They suggested instead that the molecular motion that develops as
ASW is heated through its glass transition is rotational.
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Table 7. Measurements of thermophysical properties of LDA.

Property Conditionsa Reference

Density (g cm−3)

0.94 ± 0.02 ASW, 82/110 K, 1 bar [156]
0.94 ASW, 77 K, 1 bar [135]
0.94 ± 0.02 LDAb, 117 K, 1 bar [150]

Heat capacityc (J mol−1 K−1)

14.94 LDAb,d, 90 K, 1 bar [157]e

19.78 LDAb,d, 124 K, 1 bar [157]e

Glass transition (K)

136 ± 1 HGW, 1 bar, 30 K min−1f
[28]

136 ± 1 HGW, 1 bar, 30 K min−1f
[158]

136 ASWg, 1 bar, 30 K min−1f
[29]

124 LDAb,h, 1 bar, 10 K h−1f
[157]

129 ± 2 LDAb, 1 bar, 30 K min−1f
[153]

137 HGW(D), 1 bar, 30 K min−1f
[159]

Heat capacityc change at Tg (J mol−1 K−1)

1.9 ± 0.2 ASWg, 1 bar, 136 K [29]
1.6 ± 0.1 HGW, 1 bar, 136 K [158]
1.8 ± 0.2 HGW(D) 1 bar, 137 K [159]

Enthalpy of crystallization to ice Ic (kJ mol−1)

−1.66 ± 0.27 LDAb, 1 bar, 152 K [149]
−1.33 ± 0.02 HGW, 1 bar, 159–163 K [31]
−1.29 ± 0.01 ASWg, 1 bar, 150 K [29]
−1.43 ± 0.03 HGW, 1 bar, 150 K [159]
−1.44 ± 0.08 HGW(D), 1 bar, 156 K [159]

Entropy with respect to ice Ih (J mol−1 K−1)

1.7 ± 1.7 ASWi, 1 bar, 150 K [160]

a D = D2O. Results are for H2O unless otherwise indicated.
b LDA obtained by heating of decompressed (1 bar) HDA.
c Isobaric.
d Average over three LDA samples, annealed at 124, 129 and 130 K for 2 h.
e [157] gives tabular data in the 90–136 K range.
f Heating rate in differential scanning calorimetry.
g ASW deposited at 77 K and annealed in vacuum up to about 113 K.
h Annealed in the 124–130 K range.
i Thin film deposited from a molecular beam. Entropy calculated from the evaporation rate.

Recently, Angell and co-workers have argued that the glass transition of water should be
reassigned to 165±5 K [8, 30]. They noted that the excess enthalpy of HGW is still unrelaxed
at 150 K when crystallization to ice Ic begins. Studies of hyperquenched liquids show that the
excess enthalpy associated with being trapped in a high-energy configuration upon very rapid
cooling is completely relaxed at 1.1 Tg [8] Thus, for water, and using the commonly accepted
value of 136 K for Tg (see table 7), the frozen-in excess enthalpy should relax completely
at 149 K, in contrast to what actually occurs. If, however, the glass transition temperature
is revised to ∼165 K, water’s enthalpy recovery exotherm exhibits behaviour similar to that
of other hyperquenched glass formers [8]. The proposed reassignment is controversial, as is
the interpretation of calorimetric data on which it is based [162, 163]. The implication is that
water’s true glass transition temperature at atmospheric pressure would not be observable, since
it would occur above the temperature of spontaneous crystallization to ice Ic. This does not
explain water’s apparently liquid-like behaviour at 142 K [50]. On the other hand, it provides
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Table 8. Measured values of the density of HDA.

Density (g cm−3) Conditions Reference

1.31 77 K, 10 kbara [149]
1.17 77 K, 1 barb [149]
1.26 ± 0.02 77 K, 6 kbarc [150]
1.19 ± 0.02 77 K, 1 bard [150]

a HDA produced by compression of ice Ih.
b HDA produced by compression of ice Ih and then decompressed to 1 bar.
c HDA produced by compression of LDA.
d HDA produced by compression of LDA and then decompressed to 1 bar.

a plausible explanation for the notion that two different forms of water (water A, formed upon
heating ASW or HGW; and water B, formed upon heating LDA) do not interconvert even
when heated above the ‘conventional’ Tg [153], as well as for the failure of amorphous water
films to exhibit the isotopic scrambling expected for liquid-like behaviour [161]. At present,
the precise assignment of water’s glass transition temperature is a subject of debate. Most
experimental observations are consistent with the ‘conventional’ value, Tg ∼ 136 K.

6.2. High-density amorphous ice (HDA)

As first shown by Mishima and co-workers in 1984, application of pressure to ice Ih at low
temperature leads to the formation of an amorphous solid, which has come to be known as
high-density amorphous ice (HDA) [149]. The idea behind the original experiment was to
cross the metastable extrapolation of hexagonal ice’s melting curve. Because this locus has
negative slope in the (P, T ) plane, it (or its metastable extrapolation) will be crossed upon
compression of the stable solid phase. By choosing a temperature, 77 K, low enough to thwart
kinetically the transformation into stable ice IX, and also such that any liquid phase would be
below its glass transition, Mishima and co-workers succeeded in amorphizing ice Ih through
a process that started at 10 kbar and was completed by 15 kbar.

Upon decompression to atmospheric pressure, HDA at 77 K remains a dense solid
(1.17 g cm−3 [150]; compare with table 7), which transforms irreversibly to LDA upon heating
to about 120 K [150]. Upon compressing LDA at 77 K, Mishima and co-workers observed an
abrupt transition to HDA, accompanied by a 22% volume decrease, at 6 kbar [150]2. Measured
values of the density of HDA are given in table 8.

The nature of the transformation from ice Ih to HDA remains incompletely understood.
Initially interpreted as a first-order melting transition of a crystal into a glass [149], it has
been the subject of experimental [32] and computational investigation [152, 164, 165]. It has
been argued that above 165 K the first-order melting mechanism applies, but below 140 K
the compression of ice Ih leads to a mechanical instability in the crystal lattice [152, 165].
A recent neutron diffraction study of the structure of HDA, however, found no evidence of
microcrystallinity, thus calling into question the mechanical instability argument, and strongly
suggesting that ice Ih indeed melts into HDA [166].

Compression of HDA at 77 K leads, at 40 kbar, to a crystalline phase similar to
orientationally disordered ice VII [167]. At higher temperatures, about 150 K, HDA transforms
to a crystalline phase similar to ice VIII around 20 kbar [167]. The structure of HDA
decompressed to ambient pressure has been studied by means of x-ray diffraction [168] and
neutron scattering [151, 166, 169, 170]. Figure 19 shows a comparison of the short-range

2 The apparently reversible transition between LDA and HDA is discussed in section 6.3.
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Figure 19. Contours of constant density around a central water molecule showing the distribution
of (left to right) the first-, second- and third-neighbour water molecules for (top to bottom) HDA
at 80 K, liquid water at 298 K, LDA at 80 K and ice Ih at 220 K. The contour levels are for
intermolecular radial distribution function values of (2.1, 1.5, 1.2; left to right; top), (1.7, 1.3, 1.1),
(2.3, 1.7, 1.2), (3.1, 2.1, 1.5; bottom). The contours were calculated by Monte Carlo simulation to
generate ensembles of water molecules whose structure is consistent with the measured diffraction
data. Reprinted, with permission, from [166] Finney J L et al 2002 Phys. Rev. Lett. 88 225503.
Copyright (2002) by the American Physical Society.

structures of HDA, LDA, ice Ih and liquid water in the form of spatial density functions [166].
It can be seen that there are significant local order similarities between LDA and ice Ih, and
between HDA and liquid water. The similarity between liquid water and HDA extends to the
second and third coordination shells, supporting Mishima’s view [149] that there is a first-order
melting transition to HDA upon compression of cold ice Ih [166]. The study of Finney et al
[166] includes the first experimental determination of the three site–site distribution functions
(H–H, O–O, O–H) of LDA and HDA. Klotz et al [171] studied the structure of HDA under
pressure, up to about 22 kbar.

Recently Mishima and Suzuki apparently succeeded in forming HDA by rapid cooling
(103–104 K s−1) of emulsified liquid water under pressure (about 5 kbar; see figure 18 and
table 6) [154]. The material formed below 130 K, when examined by Raman spectroscopy and
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Figure 20. The reversible transition between LDA and HDA. The data show the evolution of the
volume as a function of applied pressure during compression (a), subsequent decompression (b)
and recompression (c) of amorphous phases during warming from 130 to 140 K. Compression of
ice Ic at ∼145 K is also shown (d). Reprinted, with permission, from [172].

using x-ray diffraction at atmospheric pressure and 77 K, yielded a spectrum similar to that
of decompressed HDA. Furthermore, upon heating at 1 bar an abrupt transformation to a low-
density phase was observed at 130 K (entirely analogous to the decompressed HDA-to-LDA
transition), and this low-density material in turn yielded a Raman spectrum similar to that of
LDA. The glass transition of the material (presumably HDA) formed by cooling emulsified
water under pressure has not yet been measured.

6.3. The transition between LDA and HDA

In 1985 Mishima and co-workers compressed LDA (formed by heating decompressed HDA
at atmospheric pressure above 130 K, and then rapidly cooling to 77 K) and observed a sharp
transition at 6 ± 0.5 kbar [150]. The transition entailed an about 22% volume decrease, and
did not reverse when the pressure was decreased. By increasing the temperature to about
135 K, Mishima showed that the transition can be reversed [172] (figure 20). Table 9 lists
thermodynamic quantities associated with the apparently first-order transition between LDA
and HDA.

The sharpness and reversibility of the transformation are consistent with a first-order
transition between LDA and HDA. The equilibrium pressure Peq for a first-order transition
satisfies the thermodynamic identity

Peq = −�u

�v
+ Teq

dP

dT
(9)

where Teq is the equilibrium temperature, �u and �v are the differences in internal energy and
volume between the coexisting phases, and dP/dT is the slope of the equilibrium transition
line in the (P, T ) plane. Using the low-pressure value of the enthalpy difference between
LDA and HDA for �u, and the measured volume difference (see table 9), the calculated
equilibrium pressure is at most 1.9 kbar [175, 176]. Since the transition from HDA to LDA is
exothermic, the second term on the right-hand side of equation (9) is negative, and allowing
for this quantity would make the calculated equilibrium pressure less than 1.9 kbar. Thus, the
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Table 9. Measurements of thermodynamic properties associated with the apparently first-order
transition between LDA and HDA.

Property Conditions Reference

Transition pressure (kbar)a

6 ± 0.5 77 K [150, 172]
2 135 K [172]

Volume change (cm3 g−1)b

−0.22 77 K [150]
−0.2 135 K [172]

Enthalpy change (J mol−1)c

530d 114 K, 1 bar [173]
756 ± 144 117 K, 1 bar [149]
507 ± 54e 107–130 K, 1 bar [174]

a The value of the pressure at which the transition is observed. Includes the non-equilibrium
overpressurization.
b v(HDA) − v(LDA).
c h(HDA) − h(LDA).
d Does not include the 244 J mol−1 due to annealing HDA between 85 and 105 K.
e Does not include the enthalpy of annealing of HDA.

measured transition pressure is close to equilibrium at 135 K, but a sizable overpressure must
be applied at 77 K to overcome kinetic sluggishness.

The progress of the LDA–HDA transition has been followed visually [177, 178], as well
as by Raman spectroscopy [178] and using neutron diffraction [179]. The observation of
a well-defined propagating phase boundary [178] supports the notion of a first-order phase
transition. In contrast, a recent neutron and x-ray diffraction investigation of structural changes
in recovered (atmospheric pressure) HDA upon annealing has been interpreted as implying
that the transition to LDA proceeds through a series of metastable intermediates [180] (see
also section 7.4). However, the temperatures in that study (95, 100, 105 and 110 K) were
all below 135 K, the thermal level required for the transition to be reversible (see figure 20)
and hence the observations are instead fully consistent with incomplete structural relaxation
upon annealing. The elastic properties of LDA and HDA in the transition region have been
investigated ultrasonically. Both heating of recovered HDA and compression of LDA lead to
softening of the shear modulus [181, 182].

6.4. Very-high-density amorphous ice (VHDA)

Recently Loerting et al [155] reported that an apparently distinct form of high-density
amorphous ice can be recovered at 77 K and atmospheric pressure, following isobaric heating
of HDA under pressure. They called this material very-high-density amorphous ice (VHDA).
Specifically, they heated HDA at 11 kbar from 77 K up to 165 K, and at 19 kbar from 77 K
to 177 K (see figure 18). The resulting material relaxed at atmospheric pressure and 77 K to
the same structure, as characterized by x-ray diffraction and Raman spectroscopy, and had a
density of 1.25 g cm−3, that is to say ∼9 % higher than recovered HDA. Upon isochoric heating
from 77 K to 140 K starting from a pressure of 2 kbar, VHDA was found to convert back to
HDA. Isobaric heating at 1.1 kbar to 127 K yielded LDA, with no intermediate formation of
HDA. Both the Raman spectrum and the x-ray diffraction pattern of VHDA differ from those
of HDA.

The detailed structure of VHDA has been determined by Finney et alvia neutron diffraction
with isotope substitution [183], with site–site radial distribution functions and spatial density
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distributions calculated by the empirical potential structure refinement Monte Carlo procedure.
The OH and HH radial distribution functions of recovered VHDA were found to be very similar
to those of HDA, but significant differences were found in the respective OO distributions. The
first OH coordination number for VHDA is 2, indicating that each water molecule participates
in two hydrogen bonds, and hence that VHDA is a fully coordinated hydrogen bond network.
Integration of the area under the OO first peak out to the first minimum in HDA reveals that the
number of nearest neighbours increases from 5 in HDA to 6 in VHDA [183]. These differences
notwithstanding, Klotz et al [171] noted that the structure of recovered VHDA is very similar
to that of HDA at about 7 kbar.

Loerting et al [155] found that the volume decreased continuously during isobaric heating
of HDA. However, the recovered samples at 77 K and 1 bar showed just one distinct structure.
They interpreted this observation as implying that pressurized amorphous ice with a continuum
of densities relaxes upon depressurization to a new form of amorphous water, VHDA. Whether
this recovered state is indeed a new form of amorphous water, or just a kinetically trapped
structure, is not known at present.

7. Interpretations

7.1. Stability limit conjecture

In 1982 Speedy [184] proposed an interpretation of the thermodynamics of metastable water,
according to which the increase in response functions upon supercooling is caused by the
approach to the spinodal curve where superheated liquid water becomes unstable with respect
to the vapour phase. A schematic representation of the stability limit conjecture is shown
in figure 21. Its salient feature is the continuous spinodal curve bounding the superheated
and supercooled regions. In normal liquids, the liquid spinodal has a positive slope in the
(P, T ) plane, and the zero-temperature limit of the spinodal curve yields the upper bound
for the liquid’s tensile strength (e.g., 27 times the critical pressure for the van der Waals
fluid [24]). In water, according to Speedy’s conjecture, the spinodal would instead retrace
towards positive pressures, and would therefore be approached upon isobaric supercooling.
Because the spinodal is a locus of diverging density and entropy fluctuations [24], retracing
would indeed explain the experimentally observed increase in water’s compressibility and heat
capacity.

Thermodynamic consistency demands that the slope, in the (P, T ) plane, of a spinodal
curve must change sign upon encountering a line along which the thermal expansion coefficient
vanishes [184–186]. This is shown in figure 21, where at ‘e’ the liquid attains its maximum
tensile strength and its spinodal curve retraces its path after encountering the TMD line3 ‘fae’,
along which α = 0. Between curves ‘fae’ and ‘fe’, the liquid’s thermal expansion coefficient
is negative. This is shown by isochores ‘g’ and ‘h’ (ρg > ρh). The former becomes tangent
to the spinodal with negative slope (pressure increase upon isochoric cooling); the latter with
positive slope. The change in slope of the spinodal follows from the fact that it is an envelope
of isochores [24, 185]; that is to say, at the spinodal the following equation is satisfied:

(
dP

dT

)
sp

=
(

∂ P

∂T

)
ρ

. (10)

The left-hand side denotes the slope of the spinodal in the (P, T ) plane, and the right-hand
side, the slope of an isochore, evaluated at the spinodal. In addition to the tangency condition

3 See also section 3.
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Figure 21. A schematic representation of Speedy’s stability limit conjecture. ‘st’ is the sublimation
curve, ‘tc’ is the boiling curve and ‘tm’ is the melting curve. ‘g’ and ‘h’ are isochores (ρg > ρh),
‘c’ and ‘t’ are the critical and triple points, respectively. ‘fae’ is the locus of density maxima and ‘cef’
is the continuous spinodal bounding the superheated, supercooled and simultaneously superheated–
supercooled states. Reprinted, with permission, from [24], Debenedetti P G, Metastable Liquids,
Concepts and Principles copyright (1996) Princeton University Press.

Figure 22. The phase diagram of water, showing the postulated continuous, retracing spinodal
according to Speedy’s stability limit conjecture. Reprinted, with permission, from [24],
Debenedetti P G, Metastable Liquids, Concepts and Principles copyright (1996) Princeton
University Press, and adapted  originally from [316].

given by equation (10), the slope of isochores must satisfy the requirement that it vanish along
‘fae’. If, starting anywhere along ‘fe’, the temperature is increased isobarically, the density
will increase, reach a maximum along ‘fae’ and decrease thereafter: line ‘fae’ is a locus of
density maxima. Thus, according to the stability limit conjecture, water’s TMD locus causes
its liquid spinodal to retrace its path to positive pressures, providing a continuous boundary
for superheated, stretched and supercooled states. This scenario is illustrated in figure 22.
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A hitherto unnoticed implication of the stability limit conjecture all but rules out its validity
as a plausible interpretation of water’s thermodynamics. Two non-conjugate thermodynamic
variables (e.g., temperature and pressure; temperature and density) specify the equilibrium state
of a pure substance. A retracing spinodal such as ‘ef’ must intersect the metastable continuation
of the vapour–liquid equilibrium curve (not shown in figures 21 or 22). Any point in the (P, T )

plane along a phase coexistence locus corresponds to two different densities (e.g., saturated
liquid and vapour along ‘tc’). The spinodal ‘cef’ is a locus of liquid state points. Therefore,
the intersection of the retracing branch ‘ef’ with the metastable boiling curve must correspond
to the same liquid state. This can only be possible if the spinodal and the binodal coincide,
which implies that the intersection of the retracing spinodal and the metastable boiling curve
is a critical point. Therefore, if the superheated liquid spinodal retraces its path to positive
pressures, the vapour–liquid coexistence locus must have both upper and lower critical points.
The former is the normal vapour–liquid critical point. Although a metastable lower critical
point for water’s vapour–liquid transition cannot be ruled out, there is no experimental evidence
that such a point exists.

The implausible lower critical point for the vapour–liquid transition would only occur if
a spinodal curve were to retrace to positive pressure. Several microscopic models of water-
like fluids show a retracing spinodal curve that does not extend to positive pressure. In lattice
models with directional interactions due to Sastry et al [187], Sasai [188] and Borick et al [189],
the intersection of the TMD and the liquid spinodal causes the latter to retrace. However, the
spinodal does not reach positive pressure, and is superseded by a locus of limits of stability
of the supercooled liquid with respect to the solid phase. A lattice model with spherically
symmetric nearest-neighbour attraction and next-nearest-neighbour repulsion also exhibits
spinodal retracing, but the spinodal curve reaches a low-temperature limiting value P = 0 at
T = 0 [190].

Within the framework of the stability limit conjecture, data for deeply supercooled water
are often fitted to the form

X = X0 + A

(
T

Ts
− 1

)−γ

(11)

where X is a thermodynamic quantity that diverges at the spinodal, A is a constant, Ts is
the singular (spinodal) temperature and X0 is the background, non-diverging component.
Under the assumption that the Helmholtz energy is an analytic function of temperature
and density at the spinodal, γ = 1/2 should be observed upon isobaric cooling [24, 191].
Data analysis according to equation (11) yields ambiguous results [24, 57]. This follows
not just from the implausibility of a spinodal singularity upon supercooling, but also from
the experimental limitations imposed by homogeneous nucleation on the possibility of
approaching the conjectured singularity close enough to make power-law fits reliable [24].
For example, at the homogeneous nucleation temperature of 231 K, the quantity (T/Ts − 1)
equals 0.01 for Ts = 228 K [60], compared to 10−3 or better for state-of-the-art critical-
phenomena experiments (see, e.g., [192]). Although the stability limit conjecture is a strictly
thermodynamic theory, the notion of a supercooled liquid spinodal has also been used in the
analysis and correlation of transport and relaxation properties (e.g., [60]). Equation (7) and
figure 15 illustrate this approach, which is discussed further in section 7.5.

The stability limit conjecture played an important role in the search for a coherent picture
of metastable water’s overall behaviour. An incisive and useful exercise in thermodynamic
consistency, its implausibility is, however, rendered evident by the same type of macroscopic,
model-independent reasoning invoked in its formulation. That it has taken more than twenty
years to uncover this flaw highlights the subtlety of the arguments involved.
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7.2. Second critical point

The second-critical-point interpretation was formulated in 1992 by Poole et al [193]. It links the
anomalies of supercooled water to the transition between LDA and HDA. In so doing it provides
a thermodynamically consistent perspective on the global phase behaviour of metastable water,
and has opened up a rich new area of research in liquid-state physics that has come to be known
as polyamorphism (e.g., [194, 195]). According to this view, the transition between the two
forms of amorphous water is first order and terminates at a critical point. The experimentally
observed increases in liquid water’s heat capacity, compressibility and magnitude of the
thermal expansion coefficient upon cooling are the macroscopic manifestation of the increased
density and entropy fluctuations (see equations (3)) associated with this critical point, above
which the two metastable forms of amorphous water become indistinguishable [193]. The
experimentally observed transition between LDA and HDA is interpreted as the structurally
arrested manifestation of an equilibrium phase transition between two forms of liquid water:
low-density liquid (LDL) and high-density liquid (HDL), of which LDA and HDA are simply
the corresponding vitreous forms [196–198]. The novelty of these ideas and the elegant
simplicity of the resulting picture remain as striking today as when this interpretation was put
forward more than a decade ago.

When water freezes to ice Ih it expands. In supercooled water, transient domains where
molecules adopt arrangements with high tetrahedral symmetry form spontaneously by thermal
fluctuations [20, 21]. It is energetically favourable for these low-density domains to share edges
and faces without the introduction of strain [14]. Consequently their average size increases
upon cooling. The potential therefore exists for a transition between a denser, disordered phase
and a less dense but more structured phase. In the second-critical-point scenario this transition
involves actual discontinuities of volume and entropy: it is a first-order phase transition.
Because the high-density phase is also the one with the largest entropy, the phase transition
locus has a negative slope in the (P, T ) plane, and the critical point associated with this
transition corresponds to the temperature above which (and, unusually, the pressure below
which) the difference between the coexisting phases vanishes (figure 23).

The second-critical-point interpretation was formulated as a result of extensive molecular
dynamics simulations of the ST2 model of water [199]. Poole et al [193] observed that low-
temperature isotherms of this model exhibit an inflection point at high pressure; the shape and
temperature dependence of the inflection region are similar to what would be observed if a
critical point were approached. Non-equilibrium isothermal compression of low-temperature,
low-density amorphous solid ST2 in fact yielded sharp inflections at which the volume changed
abruptly, suggesting the existence of a first-order phase transition between two amorphous
solid forms of ST2. The inflections of the supercooled liquid isotherms and the isothermal
compression simulations of the low-density amorphous solid are shown in figure 24. The
response functions of ST2 water increase in the supercooled region in qualitative agreement
with experimental observations. Similar behaviour was found [200] for the TIP4P model
of water [201]. Poole et al also investigated the behaviour of the liquid spinodal and its
relationship to the TMD. Under sufficiently high tensions (negative pressure), the TMD was
found to retrace towards lower temperatures and did not intersect the spinodal. Hence their
calculated spinodal displayed a monotonic positive slope in the (P, T ) plane and did not retrace
towards positive pressure. This is illustrated in figure 25.

Molecular simulations of LDA and HDA include detailed comparisons with the structure
determined by means of neutron scattering and an analysis of stability limits that is consistent
with the existence of a first-order transition between LDA and HDA [202].

Strong if not definitive experimental support for the second-critical-point interpretation
was obtained by Mishima and Stanley [203]. In a very clever set of experiments, these authors
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Figure 23. The phase diagram of the non-crystalline forms of water showing the second-critical-
point interpretation. C and C′ are the vapour–liquid and liquid–liquid critical points, respectively.
F is the coexistence line along which low- and high-density liquid phases (LDL, HDL) coexist. At
low enough temperatures, the liquid phases become structurally arrested into their corresponding
vitreous forms (LDA, HDA). Lines L and H are the limits of stability (spinodal curves) for HDL
and LDL, respectively. TH is the homogeneous ice nucleation locus and TX denotes the temperature
of spontaneous crystallization (to ice Ic at low pressure). Reprinted, with permission, from [22].
Copyright (1998) Nature. (http://www.nature.com/).

measured the melting curve of metastable ice IV. They observed that this locus undergoes a
sharp change of slope in the region where it would intersect the presumed line of first-order
liquid–liquid phase transitions. Results from similar experiments on D2O ices are shown in
figure 26 [204]. Since none of these solid phases undergoes abrupt changes along its melting
line, the sudden change in slope must be due to a corresponding change in the nature of the
liquid phase into which the solid melts. This follows from the Clausius–Clapeyron equation

dP

dT
= �s

�v
(12)

where dP/dT denotes the slope of the melting curve in the (P, T) plane, and �s and �v denote
the difference in molar entropy and volume, respectively, between the coexisting liquid and
solid phases. The experiments were performed by decompressing an emulsion of deionized
water droplets (40% by volume; droplet size 1–10 µm) in a continuous methylcyclopentane–
methylcyclohexane phase with sorbitan tristearate surfactant. Starting from the region of
stability of the ice phase, that is to say high pressure and low temperature, an about 1 cm3 sample
of the emulsion contained in an indium capsule was decompressed isothermally until melting
occurred, causing the temperature to decrease. The partially melted and endothermically
cooled sample was then decompressed again, causing further melting (the sample was not
maintained at fixed temperature). This is how the melting curves shown in figure 26 were
measured.

http://www.nature.com/
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Figure 24. Isothermal compression curves for LDA obtained by molecular dynamics simulation of
ST2 water (full lines), and low-temperature portions of liquid isotherms showing inflection points
(dashed lines). Note the abrupt decrease in volume upon compression into an apparently different
amorphous phase. The compression curves were generated by increasing the pressure by 25 MPa
every 10 ps. The solid curves are non-equilibrium processes, as can be seen by comparing the liquid
and solid curves at 235 K. Reprinted, with permission, from [24], Debenedetti P G, Metastable
Liquids , Concepts and Principles copyright (1996) Princeton University Press, and adapted
originally from [193].

Mishima and Stanley constructed the Gibbs free energy surface for supercooled water on
the basis of the equality of liquid and crystal chemical potentials along any melting curve.
They further assumed that the difference in volumes between high-pressure forms of ice and
ice Ih is constant over the temperature and pressure ranges 77–300 K and 0–1.5 kbar, and that
the corresponding entropy difference is negligible. Differentiation of the Gibbs surface yields
the equation of state, which predicts a low-temperature critical point at approximately 1 kbar
and 220 K [203].

Two factors render these elegant experiments not fully conclusive. First, the alternative
thermodynamic interpretation of supercooled water’s thermodynamics,namely the singularity-
free scenario discussed in section 7.3, also posits sharp, albeit continuous, changes in entropy
and volume. The practical impossibility of distinguishing sharp from discontinuous changes
in the slope of a melting line renders the experimentally determined curves less-than-definitive
proofs of the existence of a first-order liquid–liquid transition. Secondly, the hypothesized line
of first-order transitions appears to track the homogeneous nucleation locus quite closely (see
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Figure 25. Isochores (full lines), TMD locus (- — -  ) and liquid spinodal (....) for ST2 water.
The densities are 1.1 (×), 1.05 (+), 1 (�), 0.95 (	), 0.9 (♦), 0.85 (�) and 0.8 (◦) g cm−3. The
TMD line is the locus of minima along isochores and the spinodal line is the locus of minima along
isotherms. Note the retracing TMD and consequently the monotonic spinodal. Reprinted, with
permission, from [200] Poole P H et al 1993 Phys. Rev. E 48 3799. Copyright (1993) by the
American Physical Society.

figure 23). Thus, the change in slope of the melting curve may also reflect the sudden freezing of
the partially melted liquid. These caveats notwithstanding, the work of Mishima and Stanley
represents the best evidence to date in support of the second-critical-point interpretation of
supercooled water’s thermodynamics. Note that the change in slope of the melting curves
shown in figure 26 becomes less abrupt as the temperature at which such a change occurs
becomes higher and the pressure becomes lower. This too is consistent both with the second-
critical-point and the singularity-free (section 7.3) scenarios.

Molecular simulation of several water and water-like models has shown direct evidence of
low-temperature liquid–liquid immiscibility. Roberts et al [205] used Monte Carlo simulation
of a lattice model [206] with strong directional bonding, and found a phase transition
between two liquid phases with upper and lower critical points, in agreement with theoretical
predictions [206]. Using molecular dynamics simulation of the ST2 potential with a reaction
field treatment of Coulombic interactions, Harrington et al [207] constructed pressure versus
density isotherms and found that an inflection developed upon lowering the temperature. In
particular, at the lowest temperature examined, T = 235 K, a 15% change in density did not
cause the pressure to increase. The second critical point for the ST2 potential was estimated to
occur at approximately 235 K and 2 kbar [207, 208]. Evidence of liquid–liquid phase separation
at low temperatures in ST2 water has also been obtained by imposing a strong gravitational
field and calculating the resulting density profile [209]. Pressure–density isotherms of the
TIP5P model of water [210] also show evidence of a low-temperature transition between
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with permission, from [204] Mishima O 2000 Phys. Rev. Lett. 85 334. Copyright (2000) by the
American Physical Society.

two liquid phases, with an estimated critical point occurring at 217 ± 3 K, 3.4 ± 0.2 kbar and
1.13±0.04 g cm−3 [211]. In all of these studies, substantial numerical uncertainties associated
with finite-size effects prevent accurate location of the critical point. Nevertheless, evidence
of a liquid–liquid transition can be considered conclusive in the case of the ST2 and TIP5P
potentials.

Brovchenko et al [212] reported three liquid–liquid transitions in ST2 water at low
temperatures. Their method involved restricting density fluctuations (see., e.g., [213, 214]) so
that the simulated system remains homogeneous in the coexistence region. The ST2 potential
was treated with a simple spherical cut-off and no long-range electrostatic correction. An
interesting observation in this study is the fact that the critical point for the first liquid–liquid
transition (i.e., the one with the highest critical temperature and lowest critical density) occurs
at negative pressure. This is in contrast to the calculations of Harrington et al [207], and points
to the importance of studying systematically the effects of long-range electrostatics, as well
as of the imposition of constraints on density fluctuations, on phase equilibrium predictions in
molecular simulations.

In addition to the direct investigation of phase coexistence in [205, 207, 209, 211, 212],
liquid–liquid immiscibility in water models has also been inferred by extrapolation [208], and
by fitting the simulated free energy surface [215] to a theoretically based functional form for
the internal energy. In the first case, Sciortino et al [208] estimated the location of the second
critical point of ST2 water by extrapolation of the locus of isothermal compressibility extrema.
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Scala et al [215] fitted the simulated values of the internal energy of the SPC/E model of
water [216] to a functional form proposed by Rosenfeld and Tarazona [217] and obtained
the free energy by thermodynamic integration. A liquid–liquid transition was predicted,
with a critical point at 130 ± 5 K, 2.9 ± 0.3 kbar, 1.1 ± 0.03 g cm−3. Tanaka [218, 219]
performed molecular dynamics simulations of the TIP4P potential [201] and interpreted
his results as implying the existence of a second critical point, which he estimated to
occur at about 213 K and a negative pressure estimated variously to occur between 0 and
−2 kbar [218], and to be not lower than −50 or −200 bar [219]. Tanaka’s interpretation as to
the location of a second critical point differs from that of other studies with the same or similar
potentials [200, 208].

A substantial body of theoretical work has been performed, aimed at investigating the
possible microscopic basis of a liquid–liquid phase transition in water from a statistical
mechanical perspective. Seminal insights resulted from the modified van der Waals model
of Poole et al [220]. In this simple and elegant theory, hydrogen bonds are partitioned into
two categories: weak, for which the energy is zero, and strong, for which the energy is −εHB.
A weak bond can exist in � � 1 configurations, whereas a strong bond can only exist in
one configuration. These configurations differ by virtue of the mutual orientation of the two
molecules participating in bond formation. Strong hydrogen bonds are most likely to occur
when the bulk density has a value such that every molecule has the optimal local volume
required to bond strongly to its neighbours. Away from this optimal density, a fraction f of
the bonds are strong, while the remaining fraction, (1− f ), are weak. The density dependence
of f is assumed to be a Gaussian centred at the optimal bulk density. The resulting hydrogen
bond contribution to the Helmholtz energy, AHB, reads (β = 1/kT )

−β AHB = f ln[� + exp(−βεHB)] + (1 − f ) ln(� + 1) (13)

with

f = exp{−[(v − vHB)/σ ]2} (14)

where v is the molar volume, vHB is the optimal molar volume for hydrogen bonding and σ

characterizes the width of the volume interval around vHB where strong bonds are favoured.
The total Helmholtz energy is the sum of the usual van der Waals term plus twice the hydrogen
bond contribution, equation (13), since there are two moles of hydrogen bonds per mole of
molecules [220]. For an appropriate choice of parameters, the resulting equation of state
displays, in addition to the customary vapour–liquid equilibrium, a low-temperature transition
between two liquid phases of different density. This is shown in figure 27. For sufficiently
small values of the hydrogen bonding energy, the model predicts a triple point between the
vapour and the two liquid phases, and a retracing spinodal, a phase behaviour that combines
aspects of the two-critical-point and stability limit pictures.

Equation (14) is an a priori assumption on the dependence of hydrogen bond formation on
bulk density. Truskett et al [221] refined this approximation by solving a microscopic model
of orientation-dependent bond formation. In this model, two molecules form a hydrogen
bond if they exhibit mutually favourable orientations, and if one of the two participating
molecules (the so-called central molecule) has a cavity of radius ri � d , empty of molecular
centres, surrounding it, where d is the hard-core diameter. Furthermore, the participating
pair must be separated by a distance r that lies within the hydrogen bonding shell of the
central molecule, with ri � r � r0. Finally, the presence of additional molecules within the
hydrogen bonding shell weakens the existing bond. These geometric criteria for hydrogen
bond formation introduce a positive and microscopic correlation between entropy and density,
since hydrogen bond formation is favoured by a low-density local environment. Solution of
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Figure 27. The phase diagram generated with the extended van der Waals model of Poole et al
[220] in the (T, ρ) (a) and (P, T ) (b) planes. 0 � ρ � 1.5 g cm−3, 0 � T � 700 K. C and C′
are the vapour–liquid and liquid–liquid critical points, respectively. The full lines are coexistence
curves, and the corresponding spinodals are shown as dashed and dot–dashed curves. The thin
dotted line is the TMD locus. The parameters used in the calculation (see equations (12) and (13))
are vHB = 1.087 cm3 g−1, σ = vHB/4, � = 5.02 × 104, εHB = −22 kJ mol−1. Reprinted, with
permission, from [220] Poole P H et al 1994 Phys. Rev. Lett. 73 1632. Copyright (1994) by the
American Physical Society.

this model in the mean-field approximation yields an equation of state of the form

P = PVDW − ρ2kT
imx∑
i=1

(
∂pi

∂ρ

)
T

ln fi (15)

fi =
[

1 +
i

4
(1 − cos φ∗)2(exp(βεi) − 1)

]
. (16)

In the above equations PVDW is the pressure of the van der Waals fluid at the given density
and temperature, and imx is the maximum number of molecules that can be present in the
central molecule’s hydrogen bonding shell before the strength of an existing hydrogen bond
vanishes (in their calculations, Truskett et al considered a linear dependence of the hydrogen
bond strength upon i ). pi represents the probability that, in a hard-sphere fluid at the density
of interest, a given hard sphere has a cavity of radius d surrounding it and that i other spheres
lie within its hydrogen bonding shell, φ∗ is the critical angle for hydrogen bond formation,
and εi is the energy of a hydrogen bond, weakened by the presence of the other (i − 1)
molecules in the central molecule’s hydrogen bonding shell. The model captures many of
the distinctive features of water’s thermodynamics, such as density maxima, compressibility
and heat capacity minima, and sharp increases in the response functions at low temperatures.
It also predicts a liquid–liquid transition at low temperatures. This phase transition is very
sensitive to the geometric details of the hydrogen bond, and it (though not the distinctive
liquid-phase anomalies, such as negative thermal expansion) disappears upon varying φ∗ by
small amounts. Thus, the model is able to reproduce the two thermodynamically consistent
scenarios for supercooled water: the second-critical-point and the singularity-free scenarios,
of which the latter is discussed in section 7.3.

A third closely related analytical model of water that shows two fluid–fluid transitions and
two critical points is due to Jeffrey and Austin [222]. These authors replaced equation (14)
with an empirical function of temperature and density, of which the former is a low-pass
filter centred at 273.15 K, and the latter is a modified Gaussian centred around an optimum
density. The equation of state contains numerous adjustable parameters that somewhat limit its
usefulness as a fundamental theory, although they greatly increase the accuracy of the equation
for engineering calculations.
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Another important theoretical contribution to the microscopic understanding of the
thermodynamics of supercooled and glassy water is the recent work of Franzese and
Stanley [223]. These authors considered a lattice model with directional attractions in addition
to conventional nearest-neighbour interactions. These were modelled by associating with each
molecule four bonding arms, and requiring that a pair of bonding arms belonging to nearest-
neighbour molecules be properly oriented with respect to each other in order for a hydrogen
bond to form. Since each bonding arm can adopt many orientations, only one of which leads
to bonding, this introduces a strong entropic cost to bond formation. In order to account for
the increase in local volume associated with hydrogen bond formation, the total volume was
expressed as a sum over all lattice sites, plus an additional contribution from each bonded pair.
If the four bonding arms on each molecule are modelled as independent (that is to say, the
orientation of one bonding arm does not influence that of the other arms on the same molecule),
this model is the one considered by Sastry et al [16], to be discussed in section 7.3 in connection
with the singularity-free scenario. If, more realistically, intramolecular correlations between
bonding arms are not neglected, the model yields two first-order phase transitions. In the
low-temperature transition, the phase with higher density also has higher entropy, and hence
the transition line has negative slope in the (P , T ) plane.

Truskett and Dill [224, 225] introduced a two-dimensional water-like model in which each
disc possesses three bonding arms arranged at 120◦. The authors considered triplets of discs
and distinguished between three types of fluid configuration: cage-like, dense and expanded.
The former two correspond to the transient structured and unstructured regions observed in
molecular simulations of water [21], and the third represents vapour states. Combining these
ideas with the introduction of low- and high-density ice phases, the model of Truskett and
Dill provides an appealing microscopic theory for the global phase behaviour of water. It
predicts liquid-phase anomalies (density maxima, compressibility and heat capacity minima)
and expansion upon freezing. It also predicts a metastable, low-temperature liquid–liquid
transition with a negative slope in the (P, T ) plane, terminating at a critical point.

Water-like anomalies can also arise in systems interacting via spherically symmetric
potentials with two characteristic distances. The shorter distance is associated with the
repulsive core, and the longer distance represents a softer repulsion that can be overcome
at high enough pressure [226]. The core-softened family of potentials incorporates this feature
by introducing a repulsive shoulder (for example, as a finite but constant barrier, or as a linear
decrease in repulsive energy with distance). Such potentials were first used by Stell and
co-workers [227–232], and have since been applied to the investigation of water-like liquid-
phase anomalies [190, 233–241], including negative thermal expansion [190, 233, 236, 239],
compressibility maxima [233, 239] and expansion upon freezing [233, 236, 239]. Low-
temperature liquid–liquid phase transitions have also been found [190, 233–235, 237, 239, 241]
including, significantly, the possibility of a negatively sloped line of liquid–liquid transitions
in the (P, T ) plane [239]. Liquid–liquid transitions in core-softened models, however, are
generally positively sloped in the (P, T ) plane [190, 233–235, 241]. This, coupled with the
fact that such transitions can occur in the absence of density anomalies [226, 234], suggests
that this class of models may be more appropriate to liquid metals (e.g., [242, 243]) than
to water. In particular, although core-softened models illustrate well the fact that complex
fluid-phase behaviour and multiple fluid–fluid transitions can result from the existence of two
characteristic length scales, their spherical symmetry is too simplistic a representation to permit
all but qualitative studies of global phase behaviour to apply to water.

A liquid–liquid phase transition with negative slope in the (P, T ) plane, terminating
at a critical point, has also been obtained in lattice models [189, 206] and in two-state
models [244–247]. The interesting work of Hajime Tanaka has also provided valuable
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microscopic insight [248–252]. In this approach, water’s anomalies and the possibility of
a second critical point are rationalized in terms of the competition between two types of local
order: density and bond ordering. The former tends to minimize nearest-neighbour separation,
whereas bond ordering favours the formation of open local regions with tetrahedral symmetry.
These ideas have been presented both as a Landau–Ginzburg formalism [248, 249] and as a
phenomenological two-state representation [250–252]. Molecular simulation of local order in
realistic water models has confirmed the presence of open and comparatively structured, and
dense and comparatively unstructured environments (e.g., [21, 253–256]), and related these to
the liquid–liquid transition [254–256] as well as to structural, transport and thermodynamic
anomalies [21].

The eleven-year period following the publication of the two-critical-point hypothesis was
especially fruitful as regards theoretical and computational studies on this topic. Not only
has low-temperature liquid–liquid separation been demonstrated in simulations of water-like
fluids, but also a plausible microscopic basis for its occurrence has been established through the
gain in entropy upon compression brought about by the disruption of low-density, tetrahedrally
coordinated configurations.

7.3. Singularity-free scenario

In the singularity-free interpretation, the experimentally observed increases in water’s response
functions upon supercooling are explained as the thermodynamically inevitable consequences
of the existence of density anomalies [16, 257, 258]. The relevant thermodynamic relations
are [15, 16, 258](

∂KT

∂T

)
P,at TMD

= v−1(∂2v/∂T 2)P,at TMD

(dP/dT )TMD
(1)

(
∂KT

∂T

)
P

= −
(

∂α

∂ P

)
T

(2)

(
∂cp

∂ P

)
T

= −T

(
∂2v

∂T 2

)
P

. (17)

As explained in section 3, TMD denotes the locus of maximum density in the (P, T ) plane—
that is to say, the line defined by the condition α = 0; and the subscripts ‘TMD’ and ‘P , at
TMD’ denote a directional derivative along the TMD and a derivative evaluated at constant
pressure at the TMD, respectively. Since (∂2v/∂T 2)P is positive at the TMD, and for water
at positive pressure (dP/dT )TMD is negative (see figure 2), the above equations necessarily
imply that, starting from any point along the TMD:

• The isothermal compressibility of liquid water increases upon isobaric cooling.
• The thermal expansion coefficient increases upon isothermal compression and becomes

negative upon isothermal decompression.
• The isobaric heat capacity decreases upon isothermal compression.

Equation (2) further implies that the locus of extrema of KT with respect to temperature along
isobars coincides with the locus of extrema of α with respect to pressure along isotherms [258].

It is therefore the existence of density anomalies, in the form of a negatively sloped
TMD locus, that gives rise to the experimentally observed increases in response functions. In
the singularity-free scenario the response functions remain finite [62], and no underlying
singularity is invoked [258]. To illustrate this possibility, Sastry et al [16] introduced a
lattice model with nearest-neighbour attraction and directional attractions. This model has
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already been described in section 7.2. Its thermal and volumetric properties were further
investigated by Rebelo et al [258] and by La Nave et al [259]. If the four bonding arms on
each molecule are taken to be independent (that is to say, the orientation of one bonding arm
does not influence that of the other arms on the same molecule), the mean-field solution of the
model yields the behaviour illustrated in figure 28. At fixed temperature, pressure suppresses
anomalous behaviour; at fixed pressure, cooling gives rise to a pronounced increase in the
response functions. This is illustrated in the figure by the thermal expansion coefficient,
but analogous behaviour occurs for the compressibility and the heat capacity. Crucially, the
increase in response functions remains finite. The higher the pressure, the lower the temperature
where the pronounced increase in response function occurs, and the sharper is the increase.
Since a peak in the thermal expansion coefficient indicates a sudden increase in the rate of
change of volume with respect to temperature at constant pressure, the model predicts sharp
increases in specific volume upon cooling, the abruptness of which increases with pressure,
as shown in figure 28(b). Similarly, the corresponding increase in heat capacity gives rise
to a sudden decrease of entropy upon cooling, the abruptness of which also increases with
pressure [258].

An insightful early microscopic model due originally to Stanley [20, 260, 261] is in fact the
earliest example of the singularity-free scenario for supercooled water. The emphasis in that
work was on the behaviour of the specific model,not on the model-independent thermodynamic
considerations discussed above, which have come to be associated with the singularity-free
interpretation. Each water molecule i is assigned to one of j species based on the number
of bonds that it can form. A bond is formed when the interaction between two molecules
is stronger than an arbitrary cut-off. When implemented on a lattice, the model views each
occupied site as an oxygen atom, and each bond as a hydrogen bond between neighbouring
pairs of oxygen atoms. In any given configuration, molecule i can form 0, 1, 2, 3 or 4 bonds
( j = 5) on a lattice with coordination number 4. For a given probability that two neighbour
molecules are bonded, the overall concentration of molecules belonging to one of the j species
is determined by random statistics; the species’ connectivity, on the other hand, is highly non-
random. For example, on a lattice with coordination number 4 an empty site cannot be nearest
neighbour to a species-4 molecule;similarly, if the four nearest neighbours of a given site belong
to species 4, then the site must also belong to species 4 [260]. In particular, the positions of
tetrahedrally coordinated (species-4) oxygen atoms are strongly correlated. If the volume per
site depends on the number of bonds emanating from that site, with V4 > V3 > V2 > V1 > V0,
then an ‘ice-like’ patch consisting predominantly of spatially correlated, fully bonded, species-
4 molecules will have a lower local density than, say, a patch containing the same number of
non-bonded molecules [253]. The spatial correlation among molecules of a given species
introduces corresponding spatial correlations in density fluctuations. Consequently, as the
temperature decreases, the characteristic size of the ‘ice-like’ patches increases and so do
density fluctuations. Using these simple and insightful ideas, Stanley and Teixeira [20] made
a number of qualitative predictions that agree with experimental observations. These include
the increase in compressibility, isobaric heat capacity and specific volume upon cooling. The
model predicts that the compressibility reaches a maximum at low temperature and remains
finite upon further cooling.

Mention must also be made of the field theoretic model of water’s hydrogen bond network
by Sasai [262]. It includes elements of all three thermodynamic scenarios. It predicts a
retracing liquid–gas spinodal; however, at low temperatures the spinodal is superseded by
a locus of liquid stability limits with respect to ice-like fluctuations. Although there is no
low-temperature liquid–liquid transition, the response functions diverge along the liquid–ice
spinodal.
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(a)

(b)

Figure 28. Temperature dependences of the thermal expansion coefficient (a) and molar volume
(b) at various pressures for the mean-field solution of the water-like lattice model of Sastry
et al [16, 258]. Note that the volume changes upon isobaric cooling are continuous. These
changes become more abrupt upon increasing the pressure, and they then occur at progressively
lower temperatures. These calculations illustrate the singularity-free scenario. Reprinted, with
permission, from [258].

Figure 29 illustrates the general features of the singularity-free scenario, as predicted
by the model of Truskett et al [221]. With an appropriate choice of parameters, this model is
capable of reproducing both the singularity-free (figure 29) and the two-critical-point scenarios
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Figure 29. The singularity-free scenario as illustrated by the microscopic model of associating
fluids of Truskett et al [221]. C1 is the vapour–liquid critical point, the full line is the boiling
curve and the dot–dashed line is the liquid spinodal. Water-like anomalies exist in the absence
of a low-temperature transition. TMD is the locus of density extrema, and it encloses the region
where the thermal expansion coefficient is negative. TEC is the locus of compressibility extrema,
which bounds the region where the compressibility increases upon isobaric cooling. The high- and
low-temperature branches of the TEC locus are loci of compressibility minima and maxima with
respect to temperature along isobars, respectively. Reprinted, with permission, from [221].

(see figure 2 of [221]). The important point of figures 28 and 29 is not the specific model
used in the calculations but the overall behaviour, which, like the two-critical-point scenario,
is thermodynamically consistent and explains the experimental observations. None of the
theoretical models discussed in sections 7.2 and 7.3 is realistic and accurate enough to have
predictive value. Hence calculations such as those shown in figures 27–29 are of value not
because they constitute accurate predictions (which they do not), but because they show
a thermodynamically consistent interpretation of the phase behaviour of metastable water.
Identifying which of these scenarios applies to water is the task of experiments.

In principle, answering this question should not be difficult. A system quenched rapidly
into the presumed coexistence region should phase separate. If on the other hand there is
no phase transition, the system would remain indefinitely stable. In practice, however, non-
crystalline water is a glass, not a liquid, over much of the experimentally accessible temperature
range of interest. The extraordinarily slow structural relaxation rates involved stand in the way
of simple quenching experiments. Direct, real-time measurements on droplets small enough
(and cooled fast enough) to avoid crystallization would in principle yield the information
needed to distinguish between the two scenarios. So far, this challenge has not been met.

7.4. Other interpretations

The interpretations discussed so far are based on thermodynamic arguments. In contrast, Tse
and co-workers [152, 165] have argued that the pressure-induced amorphization of ice Ih is
the result not of an equilibrium thermodynamic transformation but of a mechanical instability.
Using molecular dynamics simulation of the TIP4P potential [201], Tse [165] observed a
sharp decrease of the elastic moduli of ice Ih after 20 ps at 80 K and 9 kbar. The necessary
condition for the mechanical stability of the crystal lattice, namely the requirement that the
energy must be a minimum with respect to small deformations, can be expressed in terms of
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inequalities involving the elastic moduli, also known as the Born stability criteria [263]. Tse
showed that two of the three Born inequalities were close to being violated following the sharp
decrease of the elastic constants, although no actual stability violation occurred. In a subsequent
study, Tse et al [152] performed lattice dynamics calculations on the TIP4P potential and
showed that the mechanical and thermodynamic melting lines intersect at ∼160 K, and argued
that the mechanism for the pressure-induced amorphization changes from thermodynamic for
T > 160 K to mechanical at lower temperatures. The thermodynamic melting line was not
computed form the free energies of the coexisting phases; instead, the empirical Lindemann
criterion [264] was used. It is possible, as argued by Tse and co-workers, that the mechanism
of pressure-induced amorphization of ice Ih into HDA may involve a mechanical instability
rather than equilibrium melting, especially at low temperatures4. It is also true that a transition
involving a glassy phase does not proceed via a reversible path. But the existence of kinetic
barriers should not be invoked to rule out the relevance of underlying thermodynamic driving
forces. This is especially important in the case of supercooled water, so many of whose
anomalies are thermodynamic.

An alternative interpretation of the HDA–LDA transformation has been proposed recently5

[180]. Using neutron and x-ray diffraction, Tulk et al followed the evolution of the first
diffraction peak of recovered (atmospheric pressure) HDA upon annealing at 95, 100, 105 and
110 K. The position of this peak evolves through a series of distinct intermediate states. The
authors interpreted their results as implying that the transition from HDA to LDA can proceed
in a structurally continuous manner through a series of intermediate amorphous forms, and
that, therefore, ‘phase transformations in low-temperature liquid water may be much more
complex than currently understood’. Since a reversible transition between HDA and LDA
requires temperatures of at least 130 K [172], the observed behaviour is fully consistent with
incomplete structural relaxation upon annealing at different temperatures. These results neither
suggest nor require a reinterpretation of the HDA–LDA transformation.

The glass transition temperature of HGW and ASW (136 ± 1 K) [28, 158] is slightly
different from that of LDA (129 ± 2 K) [153, 157] (see table 7). Johari et al [153] have
argued that the viscous liquids that result on thermal cycling of these amorphous phases up
to 148 K are calorimetrically distinct forms of liquid water. Water A results upon heating
ASW or HGW, and water B results upon heating LDA. Thermal cycling of HGW or ASW, on
the one hand, and LDA, on the other, up to 148 K, followed by cooling and re-heating, gave
rise to the same glass transition temperatures (136 K for HGW/ASW and 129 K for LDA).
Johari et al then concluded that water A and B are not interconvertible through a reversible
path, that water A is thermodynamically continuous with supercooled water and that water B
‘is a new phase whose incorporation in a phase diagram requires further experiments’. This
interpretation hinges on the assumption that the material that results upon heating ASW or
HGW and LDA above 148 K is an equilibrated liquid. The evidence on this is not definitive,
data having been interpreted both in support of [50] and against [161] the notion of a highly
viscous but equilibrated liquid at T < 150 K. In the light of this, and of the current debate
surrounding water’s glass transition temperature [8, 30, 162, 163], it appears simpler to regard
the interesting observations of Johari et al [153] as suggesting that the product of heating LDA
and ASW across their ‘glass transition’ may not be a fully equilibrated liquid. This obviates
the necessity of invoking yet another phase of water.

Speedy [265] proposed the existence of a new phase of water, which he called water II.
Speedy’s argument was based on the thermodynamic constraints that ensue from the existence

4 As mentioned in section 6.2, though, the fact that no microcrystallinity was detected in a recent neutron diffraction
study of HDA [166] casts doubt on this viewpoint.
5 See also section 6.3.
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of a reversible isobaric path connecting states of water at 236 K (T2) and 150 K (T1) at
atmospheric pressure. At 236 K liquid water is supercooled, and this is an easily attainable
experimental condition. 150 K marks the onset of spontaneous crystallization to cubic ice (Ic).
It follows, from the fact that the heat capacity of the metastable liquid is larger than that of the
corresponding crystal at the same temperature and pressure, that

�s(T1) � �s(T2) − [�h(T2) − �h(T1)]/T2 (18)

where � denotes property differences between metastable (non-crystalline) water and ice Ih
at the same temperature and pressure. All of the quantities in the right-hand side have been
measured, and one obtains therefore [265]

�s(T1) � 2.9 J K−1 mol−1. (19)

Speedy argued that inequality (19) constrains the entropy difference at 150 K to being
unreasonably small, and that accordingly there is no reversible path connecting non-crystalline
water at 150 K to supercooled water at 236 K. The amorphous material at 150 K is therefore,
according to Speedy, a new phase of water, which he called water II [265]. The basis for
this assertion is a theoretical estimate of �s(0) [134, 266]. Using this theoretical value, and
correcting to 150 K using estimates for the heat capacity difference between the glass and the
crystal, Speedy concluded that 2.9 J mol−1 K−1 is too small an entropy difference between
glassy and crystalline water. The problem with this argument is the a priori assumption that
the theory is correct. A subsequent experimental determination of �s(T1) by Speedy et al
based on evaporation rate measurements of amorphous and crystalline water films [160] has
in fact confirmed the validity of inequality (19), and thereby shown that it is not necessary to
invoke discontinuities [267, 268] between supercooled and glassy water.

In an interesting series of papers, Kiselev [269] and Kiselev and Ely [270–272] have
examined critically the experimental significance of a possible second critical point. They
developed a crossover equation for liquid water based on the fluctuation theory of critical
phenomena, which predicts a second critical point at 188 K and 230 MPa [271]. They then
compared the lifetime of metastable liquid states with the characteristic time required to attain
local equilibrium. Their thought-provoking conclusion is that the second critical point lies in
a ‘non-thermodynamic habitat’ in which the lifetime of the metastable state is shorter than the
time required for the attainment of internal equilibrium. The work of Kiselev and Ely points
to the need to evaluate critically the meaning of a thermodynamic state at very large degrees
of metastability. The recent computational study of deeply supercooled TIP5P water [210] by
Yamada et al [211] has addressed this question, and shown that, at least for this model, thermal
equilibrium is in fact attained in the region of the liquid–liquid transition.

7.5. Dynamics

The stability limit conjecture is a thermodynamic theory. Nevertheless, power-law fits to
supercooled water’s dynamic properties, such as equation (7), based on the existence of a
pressure-dependent singular temperature Ts(P) have been used as well (e.g., [60, 127]). In
their seminal 1976 paper [60], where the existence of an underlying singularity was first
postulated, Speedy and Angell showed that measurements of water’s viscosity, diffusion
coefficient, dielectric relaxation time, and proton and oxygen spin–lattice relaxation times
could be accurately fitted with the power-law expression

τ = τ0(T/Ts − 1)−γ (7)

where τ is a characteristic relaxation time (e.g., D−1). As shown in figure 15, equation (7)
describes supercooled water’s relaxation behaviour at pressures below 1.5 kbar. There
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is, however, no established theoretical basis for diverging relaxation times at the spinodal
curve, except at the critical point. Furthermore, homogeneous nucleation of ice precludes
measurements close enough to the presumed singular temperature to make such power-law
fits unambiguous. The Speedy–Angell fits highlighted the unusual behaviour of supercooled
water’s relaxation dynamics. However, the underlying cause of this behaviour is not necessarily
thermodynamic, and it was not until twenty years after the Speedy–Angell paper was published
that a plausible interpretation of a dynamic singularity was proposed.

In an important body of computational work, Gallo et al [273], Sciortino et al [274, 275]
and Sciortino [276] showed that the SPC/E model of water [216] exhibits slow dynamics in
the supercooled region that is consistent with the predictions of the idealized mode-coupling
theory [277]. Mode-coupling theory provides an accurate description of the temporal evolution
of correlation functions that have non-zero overlap with the density. It predicts that a purely
dynamic structural arrest occurs at a temperature Tc(P), below which the correlation functions
no longer decay to zero. In reality, the coupling between density and momentum fluctuations,
which is not taken into account in the so-called idealized mode-coupling theory, restores
ergodicity below Tc. It is now understood that the predictions of the idealized mode-coupling
theory are applicable to the moderately supercooled regime. Sciortino and co-workers [273–
275] showed that at −80 MPa (the pressure at which the density along the TMD is 1 g cm−3

in the SPC/E model) an idealized (hence extrapolated) mode-coupling transition occurs at
a temperature Tc(P) that is 50 K below SPC/E’s TMD. Although SPC/E water remains
ergodic below Tc, its slow dynamics is dominated by the proximity to this avoided singularity.
Significantly, the Speedy–Angell singular temperature [60] at which power-law fits of transport
properties appear to diverge at atmospheric pressure, 228 K, is also 49 K below the TMD. Thus,
the main significance of the simulation work of Sciortino and co-workers is that it provides a
plausible interpretation based on the idea of a purely dynamic origin for several of supercooled
water’s anomalies. According to this view, no thermodynamic singularity is needed in order
to explain the slowing down of structural relaxation in supercooled water. Rather, an avoided
dynamic transition where the system would become non-ergodic is thought to underlie the
experimental observations of slow dynamics in supercooled water.

Figure 30 shows the mean squared displacement of the centre of mass of water molecules
as a function of time, for simulated temperatures between 206.3 and 284.5 K, at approximately
isobaric conditions corresponding to a negative pressure of about −80 MPa. It can be seen
that at sufficiently low temperatures an intermediate regime appears between the ballistic
(〈(δr)2〉 ∼ t2) and diffusive regimes (〈(δr)2〉 ∼ t). During this intermediate time the mean
squared displacement remains almost flat. At sufficiently low temperatures, molecules appear
to be trapped in cages for increasingly longer periods of time, during which they execute
localized motions and are not able to diffuse. Figure 31 shows the time dependence of
the self-intermediate scattering function for the centre-of-mass motion over the time interval
10−3 < τ < 104 ps, at the same conditions as in figure 30,and for a wavevector q corresponding
to the peak of the structure factor. The quantity plotted in figure 31 is the space Fourier transform
of the van Hove self-correlation function, Gs(r, t):

Gs(r, t) = 1

N

〈 N∑
i=1

δ(r + ri (0) − ri (t))

〉
(20)

where δ denotes the Dirac delta function, ri(t) is the centre-of-mass position of molecule i
at time t , and N is the number of molecules in the system. The quantity 4πr2Gs dr is the
probability that a molecule is at a distance r from the origin at time t , given that it was at the
origin at time 0.
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Figure 30. The mean squared displacement of the centre of mass of SPC/E water molecules as a
function of time for simulated temperatures of 206.3 K (◦), 209.3 K (�), 213.6 K (♦), 224 K (	),
238.2 K (), 258.5 K (�) and 284.5 K (�). Note the cage effect, starting at about 0.25 ps, followed
by free diffusion. The arrows indicate the time at which an indicator of deviations from Gaussian
behaviour in the distribution of particle displacements reaches its maximum value. Reprinted, with
permission, from [274] Sciortino F et al 1996 Phys. Rev. E 54 6331. Copyright (1996) by the
American Physical Society.
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Figure 31. Time evolution of the self-intermediate scattering function for SPC/E water molecules.
The simulated temperatures and symbols are the same as in figure 30. The calculations are for a
wavevector corresponding to the first peak of the structure factor. Note the two-stage relaxation
at low temperatures, with β and α regimes corresponding to the approach to, and initial departure
from, the plateau. Reprinted, with permission, from [274] Sciortino F et al 1996 Phys. Rev. E 54
6331. Copyright (1996) by the American Physical Society.

The decay of the scattering function exhibits three regimes: an initial fast decay, an
intermediate plateau and long-time relaxation. The entire decay was well fitted with the



Topical Review R1715

function

Fs(Q, t) = [1 − A(Q)]e−(t/τs)
2

+ A(Q)e−(t/τl)
β

(21)

where A(Q) is the Debye–Waller factor; τs and τl are the short- and long-term relaxation
times, and β (<1) is the stretch exponent. The existence of the three regimes of structural
relaxation shown in figure 31 is an important prediction of the so-called idealized mode-
coupling theory [277]. The theory makes specific predictions about the functional form of
F(t), both as it approaches and departs from the intermediate plateau (β and α regimes,
respectively). For isobaric conditions, these predictions read:

Fs(Q, t) − A(Q) = BQ(t/t0)
−a (22)

Fs(Q, t) − A(Q) = −CQ(t/τ)−b (23)

τ = t0(T/Tc(P) − 1)−(1/2b+1/2a) (24)

D−1 ∝ [T/Tc(P) − 1]−γ (25)

γ = 1

2a
+

1

2b
(26)

[�(1 − a)]2

�(1 − 2a)
= [�(1 + b)]2

�(1 + 2b)
. (27)

Equations (22) and (23) describe the approach to (β relaxation) and initial departure from
(α relaxation) the intermediate plateau, A(Q). The theory predicts that both are described by
power laws, with exponents a and b, where t0 is a characteristic microscopic relaxation time.
The exponents a and b are not independent, but are instead related through the transcendental
equation (27), where � denotes the gamma function. γ in equations (25) and (26) is the
exponent that governs structural arrest as the system approaches the singular temperature Tc(P)

along an isobaric path. Using the simulation results shown in figure 31 and the theoretical
predictions (22)–(27), Sciortino and co-workers obtained a singular temperature of 199 K.
Significantly, this temperature is approximately 50 K lower than the TMD for the SPC/E
model at the pressure considered in their study. For water at atmospheric pressure, the Speedy–
Angell extrapolated singular temperature, 228 K, is also 50 K below the TMD. The theoretical
prediction that A(Q), BQ and CQ are temperature independent was verified.

In subsequent related work, Starr et al [278, 279] investigated the low-temperature
dynamics of the SPC/E model under pressure, up to 25 kbar. They also analysed their results
within the framework of mode-coupling theory, and obtained a Tc(P) locus in qualitative
agreement with the one predicted by power-law extrapolation of NMR spin-echo measurements
by Prielmeier et al [19]. A significant difference between SPC/E and real water noted by Starr
et al is that the diffusivity maxima as a function of pressure are more pronounced and occur
at higher pressures in SPC/E than in real water. Also, the exponent γ characterizing the
(extrapolated) vanishing of the diffusivity increases with pressure in water, and decreases with
pressure in SPC/E.

The work of Sciortino and co-workers [273–276] and of Starr et al [278, 279] gives support
to the notion that mode-coupling theory captures the main features associated with the slowing
down of water dynamics between the freezing and homogeneous nucleation temperatures.
Their results and analysis suggest that the sharp increase in relaxation times pointed out by
Speedy and Angell [60] can be explained without invoking thermodynamic interpretations.
The underlying physical picture is one in which slow dynamics arises as a result of transient
caging of molecules, as evidenced by the intermediate-time plateaus in figures 30 and 31. This
apparent success of the idealized mode-coupling theory is rather surprising. In the first place,
the dynamics of SPC/E are consistent with the mode-coupling predictions over a very broad
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range of pressure, where the primary controlling factor for the mobility changes gradually form
hydrogen bonding at low pressure to excluded volume at high pressures. Secondly, the idealized
mode-coupling theory was not formulated for network-forming fluids interacting through
directional forces. Instead, it is strictly applicable to simple, atomic systems. Fabbian et al
have subsequently extended mode-coupling theory to molecular liquids, including water [280–
282]. Comparison between theoretical predictions and simulations supports the applicability
of mode-coupling theory to the description of dynamics in moderately supercooled molecular
liquids.

In contrast to the results of Sciortino and co-workers for SPC/E water, Patschek and
Geiger [283] studied the dynamics of the ST2 model in the supercooled region along the
80 MPa isobar, and found no evidence of structural arrest. Instead, these authors found an
evolution from continuum to jump-like diffusion at low temperatures, and a corresponding
change in the activation energy for diffusion, which reached a value of 115 kJ mol−1 below
about 285 K. This value is close to four times the energy of a hydrogen bond. The diffusivity
was found to exhibit Arrhenius behaviour both at high and low temperatures, albeit with very
different activation energies. This discrepancy between the SPC/E and ST2 results is not well
understood. One possible explanation hinges on the fact that the ST2 potential gives rise to a
more structured liquid than does SPC/E, and hence anomalous behaviour tends to be shifted
up in temperature with respect to experiments in the former case, and downwards in the latter.
Hence kT may be large enough to activate a significant fraction of molecular jumps when
cages begin to form in ST2 water, preventing the observation of the approach to the kinetic
glass transition [276]. Clearly, a systematic investigation of supercooled dynamics for various
water models is needed.

Starr et al [284] investigated theoretically the dynamic properties of deeply supercooled
water in the range 136 K � T � 235 K—that is to say, between the glass transition and
homogeneous nucleation temperature. Their approach is based on the Adam–Gibbs theory of
relaxation in supercooled liquids [285]. According to this theory, the relaxation time satisfies

τ = τ0 exp(A/T sconf ) (28)

where τ is a characteristic relaxation time (e.g., the viscosity); τ0 and A are temperature-
independent constants; and sconf is the molar configurational entropy. The configurational
entropy is that part of the entropy due to the system’s potential energy [285]. The Adam–
Gibbs theory has proved remarkably successful in correlating experimental data on relaxation
in supercooled liquids (e.g., [286]), and in such cases sconf is commonly interpreted as the
entropy difference between the supercooled liquid and the stable crystal at the same temperature
and pressure (henceforth referred to as excess entropy). This interpretation is based on a
topographic view of supercooled liquids and glasses [287], according to which molecular
motion in such systems can be decomposed into sampling distinct potential energy minima
(configurational) and thermal vibrations about a given deep minimum (vibrational). Since
only the latter exist in crystals, and if one assumes further that the vibrational entropies of
the supercooled liquid and the crystal are equal, then the difference in entropy between liquid
and crystal is equal to the configurational entropy. The validity of equation (28) has also
been corroborated in computer simulations (e.g., [288]), with sconf calculated as the difference
between the total and vibrational entropies (e.g., [289]).

Starr et al [284] estimated the transport properties of deeply supercooled water assuming
the validity of the Adam–Gibbs theory. Knowledge of the excess Gibbs free energy, entropy,
and isobaric heat capacity at 150 (TX) and 236 K (TH) places five constraints on the excess
entropy function, namely the value of the function and of its first derivative at the two end
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points, and the integral of the function:

sex(TX), sex(TH) (29)

cp,ex(TX) = TX

(
∂sex

∂T

)
p,T =TX

, cp,ex(TH) = TH

(
∂sex

∂T

)
p,T =TH

(30)

∫ TH

TX

sex dT = gex(TX) − gex(TH) = [hex(TX) − TXsex(TX)] − [hex(TH) − THsex(TH)]. (31)

Using experimental values of the excess heat capacity, entropy and enthalpy, and the assumption
that the excess heat capacity is non-singular in the temperature interval of interest, Starr
et al constructed plausible forms for the temperature-dependent excess entropy and fitted
experimental data for viscosity at T > TH to equation (28), to yield the undetermined constants
τ0 and A. They used the sum of excess and residual entropies in their calculations:

sconf ≈ sex + sres. (32)

The residual entropy is that part of the entropy of ice due to proton disorder [290]. The predicted
diffusivity and viscosity are shown in figure 32. Note the change from an η(T ) functionality
that displays super-Arrhenius (fragile) behaviour at high temperature (positive curvature in ln η

versus 1/T coordinates; that is to say, effective activation energy that increases upon cooling)
to quasi-Arrhenius (strong) behaviour below T ≈ 190 K (linear ln η versus 1/T functionality).
In terms of Angell’s useful classification scheme for glass-forming liquids, water is predicted
to undergo a fragile-to-strong transition in the deeply supercooled region [291].

The prediction of a fragile-to-strong transition in deeply supercooled water is not supported
by the data of Smith and Kay [49] shown in figure 13. Smith and Kay were able to fit their
diffusivity data with a VTF form, D = D0 exp[−B/(T − T0)], with a singular temperature
T0 = 118 K. This discrepancy can be seen quite dramatically in figure 32, which includes the
measurements of Smith et al [114] as open squares. The reasons for this failure of the theory
to reproduce experimental measurements are not well understood. Whether this reflects the
breakdown of the Adam–Gibbs equation in deeply supercooled water (although the validity of
the Adam–Gibbs equation for the supercooled SPC/E model of water has been verified [292]) or
more generally the presence of a Kiselev–Ely ‘non-thermodynamic habitat’ [269–272] where
thermal equilibrium cannot be attained is an interesting question that deserves further attention.

At present, therefore, there are two mutually exclusive interpretations of the dynamics of
supercooled water, which can be summarized as follows. The diffusivity measurements of
Smith and Kay [49] in the range 150–157 K are smoothly connected to the ‘high’-temperature
data for supercooled water [19, 107] above the homogeneous nucleation temperature. No
singularity near 228 K occurs in this representation, according to which water is a normal
fragile liquid in the vicinity of 150 K. This ‘singularity-free’ view of relaxation is supported
by simulation results for the ST2 model [283]. In contrast, water’s orientational relaxation
times above the homogeneous nucleation temperature and below about 1.5 kbar can be
accurately fitted with a power-law functionality that includes a pressure-dependent singular
temperature where the extrapolated relaxation times diverge [125]. This singular temperature
(223 K at 1 bar) is very close to the Speedy–Angell temperature, 228 K. This view is
supported by simulations of the SPC/E model [273–276, 278, 279], which clearly show an
underlying avoided dynamic singularity, identified as the mode-coupling ‘critical’ temperature.
In this alternative view, water’s relaxation dynamics changes somewhere between 220 and
230 K (atmospheric pressure), and an avoided singularity separates high-temperature fragile
behaviour from low-temperature strong behaviour. This view is consistent with the Adam–
Gibbs-based calculations of Starr et al [284], although no explicit mention is made in the latter
of an avoided singularity.
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Figure 32. The temperature dependence of the viscosity (a) and self-diffusion coefficient (b) of
supercooled water. Data points in the moderately supercooled region ((♦) [120, 122]; (◦) [107])
are shown, both in the main panels and in detail in the insets, along with theoretical predictions
(dotted and full lines) based on the validity of the Adam–Gibbs equation (25) and calculated
configurational entropy, constrained by experimental data as explained in the text. The data of
Smith and Kay (�) [49] are also shown, illustrating the large gap between theoretical predictions
and experiments. Reprinted, with permission, from [284] Starr F W et al 2003 Physica A 323 51.
Copyright (2003), with permission from Elsevier.

The dynamics of supercooled water has also been interpreted in terms of the topogra-
phy of its multidimensional potential energy surface, also referred to as its energy landscape
(e.g., [287]). This refers to the surface generated by a system’s potential energy as a function
of its degrees of freedom (e.g., particle coordinates for an atomic fluid). The energy landscape
formalism (e.g., [293]) provides a useful framework for describing the static and dynamic
properties of supercooled liquids and glasses. Scala et al [292] found a close relation between
diffusion and configurational entropy in the SPC/E model. The configurational entropy is
that part of the system’s entropy that arises from the sampling of different potential energy
minima [289]. La Nave et al [294] found a strong relationship between diffusion and the
fraction of negative eigenvalues of the Hessian matrix that correspond to transitions between
adjacent potential energy minima. Giovambattista et al [295] found an intriguing inverse
relationship between the average cluster size of mobile supercooled SPC/E water molecules
and the configurational entropy associated with the degeneracy of potential energy minima.
Taken together, these investigations suggest a view of water’s slow dynamics in the moderately
supercooled regime in which diffusion is controlled by the topography of the potential energy
landscape [296]. Perhaps the most intriguing observation from these studies is the existence
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of a relationship between the number of potential energy minima [292] and the connectivity
between them [294]. This has important theoretical implications for the theory of glasses and
supercooled liquids in general,not just for water. In particular, establishing a formal connection
between the energy landscape view and mode-coupling theory remains a challenge.

The computational study of SPC/E water by Errington and Debenedetti [21] identified
a common structural cause underlying both dynamic and thermodynamic anomalies in cold
liquid water. By tracking the evolution of metrics for orientational and translational order
over broad ranges of temperature and density, including the deeply supercooled region, these
authors showed that SPC/E water’s anomalies occur as a cascade, as a result of progressive
structural ordering upon cooling and decompression. Equilibrium states with thermodynamic
anomalies (α < 0) are also necessarily states where the diffusivity D increases upon isothermal
compression (anomalous transport behaviour), whereas the converse is not true. Thus, the
dome-like region in the (T , ρ) plane where α < 0 was found by Errington and Debenedetti
to lie entirely inside the dD/dρ > 0 dome. The fact that the orientational and translational
metrics are correlated throughout the anomalous region allowed Errington and Debenedetti to
quantify the degree of structural order in SPC/E water and to calculate the minimum degree
of order needed to trigger the various anomalies. These ideas have yet to be applied to water’s
many other anomalous properties, as well as to other water models.

8. Conclusions

Slightly more than two decades have elapsed since Speedy proposed his stability limit
conjecture [184] and Angell wrote his now classic reviews on supercooled water [6, 7]. This has
been a period of explosive growth in interest and knowledge on the topic. The most important
development has been the discovery of polyamorphism in water [150]. The sharpness and
apparent reversibility of the transition between LDA and HDA inspired an important body
of work aimed at exploring, theoretically and computationally, the notion of a first-order
transition between distinct liquid phases of a pure substance. There has resulted a vastly
broadened perspective on the liquid state of matter [194, 195, 297, 298].

The experimental study of glassy water has added significantly to the body of empirical
and factual knowledge on this most important of substances. Nevertheless, and in spite of
impressive progress in measurement, modelling and simulation, large gaps in our understanding
of the global phase behaviour and the relaxation dynamics of cold, non-crystalline, metastable
water still remain. The key unanswered questions are:

Does water possess a second critical point?

There are two thermodynamically consistent scenarios that can account for the known
experimental facts concerning supercooled water. One of them posits the existence of
a metastable critical point around 220 K and 1 kbar [203]. Proving or disproving the
existence of this critical point—that is to say, distinguishing between the second-critical-
point and singularity-free interpretations—is the single most important goal as regards
metastable water’s phase behaviour. The preponderance of evidence favours the two-critical-
point interpretation [178, 203, 204]. Small droplets and molecular clusters [43–48] appear
promising systems in which to pursue further investigation of this question. Theoretically and
computationally, a more systematic understanding of what types of intermolecular interaction
promote liquid–liquid immiscibility, both in the absence and in the presence of density
anomalies, is desirable.
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Can the first question be answered by experiments?

The interesting work of Kiselev and Ely [269–272] raises the question of whether the very
notion of a thermodynamic state retains significance deep enough inside the metastable
region. This is a topic that deserves more attention than it has received so far. Experimental
knowledge of structural relaxation dynamics in water in the 140–230 K range is urgently
needed. More computational studies of structural relaxation in deeply supercooled realistic
water models, such as [211], should also prove useful. The more general theoretical question
of how to rigorously incorporate metastability into statistical mechanics remains a challenge,
interesting steps in this direction notwithstanding (e.g., [299–302]). Valuable insight may also
result from comparisons with other systems in which polyamorphic transitions occur (see,
e.g., [194, 195, 297, 298]). The latter is a rich avenue of research not discussed in this review,
which is limited exclusively to water.

Is non-crystalline water a liquid at atmospheric pressure and in the temperature range from
140 to 150 K?

In the approximate temperature range 140–150 K water may be hot enough to be no longer
a glass, yet cold enough to be not yet able to crystallize at a measurable rate. This should
allow additional measurements of transport and flow properties to be made (e.g., [49, 50]) so
as to clarify the nature of water’s low-temperature non-crystalline state. The preponderance
of evidence suggests that water is indeed a very viscous liquid under these conditions [49, 50],
but challenges to this viewpoint [7, 161] have not been conclusively disproved.

Is there a transition from fragile to strong behaviour in supercooled water?

The diffusivity measurements of Smith and Kay [49], and the ST2 simulations of Patschek and
Geiger [283] suggest that supercooled water is a fragile liquid slightly above 150 K, and that the
dynamics of supercooled water above the homogeneous nucleation temperature is smoothly
connected to that of the ultraviscous liquid above Tg. In contrast, the NMR measurements of
Lang and Lüdemann [125] and the SPC/E simulations of Sciortino et al [274, 275], Gallo et al
[273] and Starr et al [278, 279] are consistent with an avoided singularity near 228 K and a
gradual change in water dynamics from fragile behaviour above the singularity temperature to
strong behaviour below. Resolution of this question requires experimental measurements of
relaxation dynamics in the 140–230 K range, as well as systematic computational studies of
supercooled dynamics for several realistic water models across broad ranges of temperature
and pressure.

Is VHDA a distinct form of amorphous water?

VHDA’s overall significance with respect to metastable water’s phase behaviour is not yet
understood. In particular, it is not known with certainty whether VHDA is a distinct phase,
separated from HDA by a first-order transition, or whether it is simply very dense HDA.

Seeking answers to these questions is important not just for an improved understanding
of water. The known implications of this research impact on biology (e.g., [303, 304]),
astronomy and planetary science (e.g., [305–308]), atmospheric science (e.g., [40–42]) and
pharmaceutical processing (e.g., [309]). Others still are likely to emerge, as deeper knowledge
is gained about the properties of water outside its normal range of stability.
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[110] Harris K R and Newitt P J 1997 J. Chem. Eng. Data 42 346
[111] Price W S, Ide H and Arata Y 1999 J. Phys. Chem. A 103 448
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